MAT 108 Sample Final Exam

General Instructions: Answer each question in the book provided. Partial credit will be given. so show all of your work. You may use a scientific calculator on this exam, but must show work to receive full credit where indicated.

Scoring. Problems 1 is worth 10 credits. Problem 2 is worth 8 credits. Every other question is worth 6 credits each.

- 1. Compute the exact value for each. If a value is undefined, then write undefined. Show work to justify your answers.
 - (a) $\cos(0)$ (c) $\sec(\pi/2)$ (e) $\csc(7\pi)$ (b) $\sin(-\pi)$ (d) $\tan(\pi)$
- 2. Compute the exact value for each. If a value is undefined, then write undefined. Show work to justify your answers.
 - (a) $\sin(60^{\circ})$ (c) $\cos(225^{\circ})$
 - (b) $\sec(30^{\circ})$ (d) $\tan(-120^{\circ})$
- 3. Compute the exact value for each. If a value is undefined, then write undefined. Show work to justify your answers.
 - (a) $\cos^{-1}(1)$ (b) $\sin^{-1}(\frac{1}{2})$ (c) $\cos^{-1}(-\frac{1}{\sqrt{2}})$
- 4. If $\tan(\theta) = -2/3$ and θ is in Quadrant II, find all six trigonometric values of θ .
- 5. Draw the graph of $y = 4\sin\left(\frac{x}{3}\right)$. Show at least two full cycles.
- 6. State the formula for $\cos(a+b)$ and use it to prove that $\cos(a+\pi) = -\cos(a)$.
- 7. Suppose $\triangle ABC$ has $B = 38^{\circ}$, $C = 47^{\circ}$, and c = 5 in. Solve for the remaining triangle measurements.
- 8. Use a right triangle to write the following as an algebraic expression

$$\sin(\cos^{-1}(5x))$$

(Assume that x is positive and that the functions are defined for the given expressions.)

9. At a point 50 feet from the base of a building, the angle of elevation is 32.4°. Approximate the height of the building to the nearest foot.