Practice problems for Midterm 1

Due: Never

1. Let $u(x, y)$ be the solution to the Laplace equation $\Delta u=0$ on the square $0<x<1$, $0<y<1$, with boundary value +1 on the top and 0 on all other sides, that is, $u(x, 1)=1$ and $u(x, 0)=u(0, y)=u(1, y)=0$.
a) Without finding an explicit formula for $u(x, y)$, compute $u\left(\frac{1}{2}, \frac{1}{2}\right)$.
b) What are the maximum and minimum values attained by $u(x, y)$ on the (closed) square $0 \leq x \leq 1,0 \leq y \leq 1$?
2. Consider the heat equation with source $u_{t}=u_{x x}+4$, where $0<x<1$, with boundary conditions given by $u_{x}(0, t)=5$ and $u_{x}(1, t)=\beta$. Determine the value of β for which an equilibrium solution exists. Write an explicit formula for the equilibrium solution (up to a constant).
3. Consider the heat equation with source $u_{t}=u_{x x}+4$, where $0<x<1$, with boundary conditions and initial condition given by $u_{x}(0, t)=5, u_{x}(1, t)=\beta$ and $u(x, 0)=f(x)$. Compute the total thermal energy $H(t)=\int_{0}^{1} u(x, t) \mathrm{d} x$, in terms of β and $f(x)$.
Hint: Compute $H^{\prime}(t)$ using the PDE and boundary conditions, and then compute $H(0)$. Observe that the only value of β for which the total thermal energy $H(t)$ is constant is the value for which an equilibrium solution exists (compare with the previous problem).
4. Solve the heat equation $u_{t}=3 u_{x x}$, where $0<x<1$, with boundary conditions and initial conditions given by $u(0, t)=u(1, t)=0$ and $u(x, 0)=2 \sin (\pi x)+5 \sin (4 \pi x)$.
5. Solve the heat equation $u_{t}=3 u_{x x}$, where $0<x<1$, with boundary conditions and initial conditions given by $u_{x}(0, t)=u_{x}(1, t)=0$ and $u(x, 0)=2+3 \cos (4 \pi x)$.
6. Solve the wave equation $u_{t t}=4 u_{x x}$ for $0<x<1$, with the boundary conditions given by $u(0, t)=u(1, t)=0$, and initial conditions given by $u(x, 0)=2 \sin (3 \pi x)$, $u_{t}(x, 0)=6 \sin (9 \pi x)$.
7. Solve the wave equation $u_{t t}=4 u_{x x}$ for $0<x<1$, with the boundary conditions given by $u_{x}(0, t)=u_{x}(1, t)=0$, and initial conditions given by $u(x, 0)=1+2 \cos (3 \pi x)$, $u_{t}(x, 0)=2+6 \cos (9 \pi x)$.
8. Solve the wave equation $u_{t t}=4 u_{x x}$ for $-\infty<x<+\infty$, with initial conditions given by $u(x, 0)=2 \sin (3 \pi x)$ and $u_{t}(x, 0)=6 \sin (9 \pi x)$.
9. Find the solution to the Laplace equation

$$
\Delta u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

on the disk of radius 1 , which is bounded at the origin $|u(0, \theta)|<+\infty$, and satisfies $u(1, \theta)=7+9 \cos (\theta)$.
10. Find the solution to the Laplace equation

$$
\Delta u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

on the region of the plane outside the disk of radius 1 , which is bounded as $r \rightarrow+\infty$, and satisfies $u(1, \theta)=7+9 \cos (\theta)$.
11. Find the eigenvalues $\left\{\lambda_{n}\right\}$ and corresponding eigenfunctions $\left\{\phi_{n}(x)\right\}$ of the following fourth order eigenvalue problem:

$$
\left\{\begin{array}{l}
X^{\prime \prime \prime \prime}(x)-\lambda X(x)=0 \\
X(0)=X(L)=0 \\
X^{\prime \prime}(0)=X^{\prime \prime}(L)=0
\end{array}\right.
$$

Hint: The roots of the equation $r^{4}-\lambda=0$, with $\lambda>0$, are $\sqrt[4]{\lambda}, i \sqrt[4]{\lambda},-\sqrt[4]{\lambda}$, and $-i \sqrt[4]{\lambda}$. To simplify notation, you may want to use $\alpha:=\sqrt[4]{\lambda}$.
12. Apply the method of separation of variables to find the general solution to the PDE

$$
u_{t}+u_{x x x x}=0,
$$

with $0<x<L$, subject to the boundary conditions $u(0, t)=u(L, t)=0$ and $u_{x x}(0, t)=$ $u_{x x}(L, t)=0$. (You are not asked to take into account any initial conditions).
Hint: After separating variables, use the solution to the previous problem.

