Practice problems for Midterm 1

DUE: NEVER

- 1. Let u(x, y) be the solution to the Laplace equation $\Delta u = 0$ on the square 0 < x < 1, 0 < y < 1, with boundary value +1 on the top and 0 on all other sides, that is, u(x, 1) = 1 and u(x, 0) = u(0, y) = u(1, y) = 0.
 - a) Without finding an explicit formula for u(x, y), compute $u(\frac{1}{2}, \frac{1}{2})$.
 - b) What are the maximum and minimum values attained by u(x, y) on the (closed) square $0 \le x \le 1, 0 \le y \le 1$?
- 2. Consider the heat equation with source $u_t = u_{xx} + 4$, where 0 < x < 1, with boundary conditions given by $u_x(0,t) = 5$ and $u_x(1,t) = \beta$. Determine the value of β for which an equilibrium solution exists. Write an explicit formula for the equilibrium solution (up to a constant).
- 3. Consider the heat equation with source $u_t = u_{xx} + 4$, where 0 < x < 1, with boundary conditions and initial condition given by $u_x(0,t) = 5$, $u_x(1,t) = \beta$ and u(x,0) = f(x). Compute the total thermal energy $H(t) = \int_0^1 u(x,t) \, dx$, in terms of β and f(x).

Hint: Compute H'(t) using the PDE and boundary conditions, and then compute H(0). Observe that the only value of β for which the total thermal energy H(t) is constant is the value for which an equilibrium solution exists (compare with the previous problem).

- 4. Solve the heat equation $u_t = 3 u_{xx}$, where 0 < x < 1, with boundary conditions and initial conditions given by u(0,t) = u(1,t) = 0 and $u(x,0) = 2\sin(\pi x) + 5\sin(4\pi x)$.
- 5. Solve the heat equation $u_t = 3 u_{xx}$, where 0 < x < 1, with boundary conditions and initial conditions given by $u_x(0,t) = u_x(1,t) = 0$ and $u(x,0) = 2 + 3\cos(4\pi x)$.
- 6. Solve the wave equation $u_{tt} = 4 u_{xx}$ for 0 < x < 1, with the boundary conditions given by u(0,t) = u(1,t) = 0, and initial conditions given by $u(x,0) = 2\sin(3\pi x)$, $u_t(x,0) = 6\sin(9\pi x)$.
- 7. Solve the wave equation $u_{tt} = 4 u_{xx}$ for 0 < x < 1, with the boundary conditions given by $u_x(0,t) = u_x(1,t) = 0$, and initial conditions given by $u(x,0) = 1 + 2\cos(3\pi x)$, $u_t(x,0) = 2 + 6\cos(9\pi x)$.
- 8. Solve the wave equation $u_{tt} = 4 u_{xx}$ for $-\infty < x < +\infty$, with initial conditions given by $u(x,0) = 2\sin(3\pi x)$ and $u_t(x,0) = 6\sin(9\pi x)$.

9. Find the solution to the Laplace equation

$$\Delta u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

on the disk of radius 1, which is bounded at the origin $|u(0,\theta)| < +\infty$, and satisfies $u(1,\theta) = 7 + 9\cos(\theta)$.

10. Find the solution to the Laplace equation

$$\Delta u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

on the region of the plane *outside* the disk of radius 1, which is bounded as $r \to +\infty$, and satisfies $u(1, \theta) = 7 + 9\cos(\theta)$.

11. Find the eigenvalues $\{\lambda_n\}$ and corresponding eigenfunctions $\{\phi_n(x)\}$ of the following fourth order eigenvalue problem:

$$\begin{cases} X''''(x) - \lambda X(x) = 0\\ X(0) = X(L) = 0\\ X''(0) = X''(L) = 0 \end{cases}$$

Hint: The roots of the equation $r^4 - \lambda = 0$, with $\lambda > 0$, are $\sqrt[4]{\lambda}$, $i\sqrt[4]{\lambda}$, $-\sqrt[4]{\lambda}$, and $-i\sqrt[4]{\lambda}$. To simplify notation, you may want to use $\alpha := \sqrt[4]{\lambda}$.

12. Apply the method of separation of variables to find the general solution to the PDE

$$u_t + u_{xxxx} = 0,$$

with 0 < x < L, subject to the boundary conditions u(0,t) = u(L,t) = 0 and $u_{xx}(0,t) = u_{xx}(L,t) = 0$. (You are not asked to take into account any initial conditions). Hint: After separating variables, use the solution to the previous problem.