Sample Practice Problems for the Final Exam

Remember to revise old Final Exams (available online) and Midterm Exams of both sections.

- 1. Solve the heat equation $u_t = 5 u_{xx}$, where 0 < x < 1, with boundary conditions and initial condition given by u(0,t) = u(1,t) = 0 and $u(x,0) = 6\sin(3\pi x)$.
- 2. Solve the wave equation $u_{tt} = 4 u_{xx}$ where 0 < x < 1, with the boundary conditions given by u(0,t) = u(1,t) = 0, and initial conditions given by $u(x,0) = \sin(2\pi x)$, $u_t(x,0) = 2\sin(4\pi x)$.
- 3. Solve the equation $u_t = u_{xx} + e^{-t} \sin(4x)$ where $0 < x < \pi$, with the boundary conditions given by u(0,t) = 0, $u(\pi,t) = 3$, and initial condition given by $u(x,0) = \sin(3x)$.
- 4. Compute the Fourier series of the function $f: [-1,1] \to \mathbb{R}$ given by $f(x) = x^2 + 1$. For what values of $-1 \le x \le 1$ does this series converge to f(x)?
- 5. Compute the Fourier series of the function $f: [-1,1] \to \mathbb{R}$ given by f(x) = 2x. For what values of $-1 \le x \le 1$ does this series converge to f(x)?
- 6. Consider the boundary value problem

$$\phi'' + (2 - 4x)\phi' + \lambda\phi = 0, \quad \phi(0) = \phi(1) = 0.$$

- a) Rewrite the above equation in Sturm-Liouville form;
- b) Verify that $\phi(x) = x(1-x)$ is an eigenfunction for this problem, and compute its eigenvalue λ ;
- c) Prove that the eigenvalue λ obtained in b) is the first eigenvalue λ_1 of this Sturm-Liouville problem.
- 7. Find the solution to the Laplace equation

$$\Delta u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

on the disk of radius 1, which is bounded at the origin $|u(0,\theta)| < +\infty$, and satisfies $u(1,\theta) = 2 - 5\cos(\theta)$. What are the maximum and minimum values of $u(r,\theta)$?

8. Let T be the triangle $0 \le x \le 1$ and $0 \le y \le x$. The eigenfunctions of the Laplacian with Dirichlet boundary conditions on T are given by

$$\phi_{nm}(x,y) = \sin(n\pi x)\sin(m\pi y) - \sin(m\pi x)\sin(n\pi y),$$

where n = 1, 2, ..., m - 1 and m = 2, 3, ...

- a) Compute the eigenvalue λ_{nm} corresponding to the eigenfunction ϕ_{nm} ;
- b) Write the general solution to the wave equation

$$\begin{cases} u_{tt} = u_{xx} + u_{yy} & \text{in } T \\ u = 0 & \text{on } \partial T \end{cases}$$

- c) Write formulas for the coefficients in the above general solution to match given initial conditions u(x, y, 0) = f(x, y) and $u_t(x, y, 0) = g(x, y)$. You may use that $\{\phi_{nm}\}$ are L^2 -orthogonal and satisfy $\iint_T \phi_{nm}^2 dA = \frac{1}{4}$.
- 9. Let $\Omega \subset \mathbb{R}^3$ be a bounded domain with smooth boundary, and let u(x, y, z, t) be a solution of

$$\begin{cases} u_{tt} = \Delta u - u & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where $\Delta u = u_{xx} + u_{yy} + u_{zz}$. Define the energy E(t) of this solution by

$$E(t) = \frac{1}{2} \iiint_{\Omega} u_t^2 + |\nabla u|^2 + u^2 \mathrm{d}V.$$

- a) Show that E(t) is constant;
- b) Use a) to prove that a solution to the above PDE with given initial position u(x, y, z, 0) and initial velocity $u_t(x, y, z, 0)$ is unique. (HINT: Suppose that u and v are two such solutions, and study the energy of w = u v)
- 10. Use Fourier transforms to find an explicit formula for the solution u(x,t) of

$$\begin{cases} u_t = 2u_{xx}, \\ u(x,0) = xe^{-x^2/2} \end{cases}$$

where $-\infty < x < \infty, t > 0$.

- 11. Use Fourier transforms to find the solution u(x,t) of the PDE $2u_t + 5u_x = 0$, where $-\infty < x < \infty, t \ge 0$, and u(x,0) = f(x).
- 12. Use Fourier transforms to find the solution u(x,t) of the PDE $u_t + 2u_x u = 0$, where $-\infty < x < \infty, t \ge 0$, and u(x,0) = f(x).