Math 241, Fall 2015

Sample Practice Problems for the Final Exam

Remember to revise old Final Exams (available online) and Midterm Exams of both sections.

1. Solve the heat equation $u_{t}=5 u_{x x}$, where $0<x<1$, with boundary conditions and initial condition given by $u(0, t)=u(1, t)=0$ and $u(x, 0)=6 \sin (3 \pi x)$.
2. Solve the wave equation $u_{t t}=4 u_{x x}$ where $0<x<1$, with the boundary conditions given by $u(0, t)=u(1, t)=0$, and initial conditions given by $u(x, 0)=\sin (2 \pi x)$, $u_{t}(x, 0)=2 \sin (4 \pi x)$.
3. Solve the equation $u_{t}=u_{x x}+e^{-t} \sin (4 x)$ where $0<x<\pi$, with the boundary conditions given by $u(0, t)=0, u(\pi, t)=3$, and initial condition given by $u(x, 0)=\sin (3 x)$.
4. Compute the Fourier series of the function $f:[-1,1] \rightarrow \mathbb{R}$ given by $f(x)=x^{2}+1$. For what values of $-1 \leq x \leq 1$ does this series converge to $f(x)$?
5. Compute the Fourier series of the function $f:[-1,1] \rightarrow \mathbb{R}$ given by $f(x)=2 x$. For what values of $-1 \leq x \leq 1$ does this series converge to $f(x)$?
6. Consider the boundary value problem

$$
\phi^{\prime \prime}+(2-4 x) \phi^{\prime}+\lambda \phi=0, \quad \phi(0)=\phi(1)=0 .
$$

a) Rewrite the above equation in Sturm-Liouville form;
b) Verify that $\phi(x)=x(1-x)$ is an eigenfunction for this problem, and compute its eigenvalue λ;
c) Prove that the eigenvalue λ obtained in b) is the first eigenvalue λ_{1} of this SturmLiouville problem.
7. Find the solution to the Laplace equation

$$
\Delta u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

on the disk of radius 1 , which is bounded at the origin $|u(0, \theta)|<+\infty$, and satisfies $u(1, \theta)=2-5 \cos (\theta)$. What are the maximum and minimum values of $u(r, \theta)$?
8. Let T be the triangle $0 \leq x \leq 1$ and $0 \leq y \leq x$. The eigenfunctions of the Laplacian with Dirichlet boundary conditions on T are given by

$$
\phi_{n m}(x, y)=\sin (n \pi x) \sin (m \pi y)-\sin (m \pi x) \sin (n \pi y)
$$

where $n=1,2, \ldots m-1$ and $m=2,3, \ldots$.
a) Compute the eigenvalue $\lambda_{n m}$ corresponding to the eigenfunction $\phi_{n m}$;
b) Write the general solution to the wave equation

$$
\begin{cases}u_{t t}=u_{x x}+u_{y y} & \text { in } T \\ u=0 & \text { on } \partial T\end{cases}
$$

c) Write formulas for the coefficients in the above general solution to match given initial conditions $u(x, y, 0)=f(x, y)$ and $u_{t}(x, y, 0)=g(x, y)$. You may use that $\left\{\phi_{n m}\right\}$ are L^{2}-orthogonal and satisfy $\iint_{T} \phi_{n m}^{2} \mathrm{~d} A=\frac{1}{4}$.

9 . Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with smooth boundary, and let $u(x, y, z, t)$ be a solution of

$$
\begin{cases}u_{t t}=\Delta u-u & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Delta u=u_{x x}+u_{y y}+u_{z z}$. Define the energy $E(t)$ of this solution by

$$
E(t)=\frac{1}{2} \iiint_{\Omega} u_{t}^{2}+|\nabla u|^{2}+u^{2} \mathrm{~d} V
$$

a) Show that $E(t)$ is constant;
b) Use a) to prove that a solution to the above PDE with given initial position $u(x, y, z, 0)$ and initial velocity $u_{t}(x, y, z, 0)$ is unique. (Hint: Suppose that u and v are two such solutions, and study the energy of $w=u-v$)
10. Use Fourier transforms to find an explicit formula for the solution $u(x, t)$ of

$$
\left\{\begin{array}{l}
u_{t}=2 u_{x x}, \\
u(x, 0)=x e^{-x^{2} / 2}
\end{array}\right.
$$

where $-\infty<x<\infty, t>0$.
11. Use Fourier transforms to find the solution $u(x, t)$ of the PDE $2 u_{t}+5 u_{x}=0$, where $-\infty<x<\infty, t \geq 0$, and $u(x, 0)=f(x)$.
12. Use Fourier transforms to find the solution $u(x, t)$ of the PDE $u_{t}+2 u_{x}-u=0$, where $-\infty<x<\infty, t \geq 0$, and $u(x, 0)=f(x)$.

