Homework Set 9

DUE: NOV 24, 2015 (IN CLASS)

1. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary $\partial \Omega$, and denote by \vec{n} the outer unit normal to $\partial \Omega$. Prove that the nonhomogeneous Neumann problem

$$\begin{cases} \Delta u = f & \text{in } \Omega, \\ \langle \nabla u, \vec{n} \rangle = 0 & \text{on } \partial \Omega \end{cases}$$

has a solution only if $\int_{\Omega} f = 0$. [REMARK. This "only if" is actually "if and only if".]

- 2. Consider the nonhomogeneous Poisson equation u''(x) = 1 on the interval 0 < x < 1, with Dirichlet boundary conditions u(0) = u(1) = 0.
 - a) Find an explicit formula for the solution u(x).
 - b) Compute the coefficients of the Fourier Sine Series of the function $f(x) \equiv 1$, and use the method of eigenfunction expansion to find u(x) as a Fourier Sine Series.
 - c) Verify that the series you obtained in b) is the Fourier Sine Series of the function you computed in a).
- 3. Let D be the unit disk in \mathbb{R}^2 , and consider the nonhomogeneous Poisson problem

$$\begin{cases} \Delta u = 4 & \text{in } D, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where we assume that $|u(0,\theta)| < +\infty$.

- a) Use the method of eigenfunction expansion to find a solution $u(r, \theta)$ in terms of the Fourier-Bessel Series of the constant function $f(r, \theta) \equiv 4$.
- b) Since $f(r, \theta)$ is radial, i.e., independent of θ , we know that $u(r, \theta)$ must also be radial. Use this to find an explicit formula for $u(r, \theta) = u(r)$. Conclude that the series you obtained in a) is the Fourier-Bessel Series of u(r).
- 4. Haberman 8.6.3 (a), (b), (c)
- 5. Haberman 8.6.6
- 6. Haberman 8.6.7
- 7. Prove the frequency shift property; that is, if $g(x) = e^{ix\xi_0} f(x)$, then $\hat{g}(\xi) = \hat{f}(\xi \xi_0)$.
- 8. Prove the time scaling property; that is, if g(x) = f(ax), then $\hat{g}(\xi) = \frac{1}{|a|} \hat{f}(\frac{\xi}{a})$.
- 9. Haberman 10.3.6