Homework Set 3

DUE: SEP 22, 2015 (IN CLASS)

1. Let $u(x, y)$ be the solution to the Laplace equation $\Delta u=0$ on the square $0<x<1$, $0<y<1$, with boundary values +1 on the top and bottom sides and -1 on the left and right sides, that is, $u(x, 0)=u(x, 1)=1$ and $u(0, y)=u(1, y)=-1$. The goal of this problem is to compute $u\left(\frac{1}{3}, \frac{1}{3}\right)$ without knowing an explicit formula for $u(x, y)$, but instead using the reflection symmetry about the diagonal line $x=y$.
a) Define $v(x, y)=u(y, x)$. Show that $\Delta v=0$, i.e., v also solves the Laplace equation.
b) Compute the boundary values of $v(x, y)$ on the square $0<x<1,0<y<1$.
c) Define $w(x, y)=u(x, y)+v(x, y)$. Compute the boundary values of $w(x, y)$ on the square $0<x<1,0<y<1$. Use the fact that solutions to the Laplace equation with given boundary values are unique to conclude that $w \equiv 0$ and hence $u(x, y)=-v(x, y)=-u(y, x)$. Compute $u\left(\frac{1}{3}, \frac{1}{3}\right)$.
2. Haberman 2.5.1 (a), (b), (c), (d)

3. Haberman 2.5.3

4. Haberman 2.5.5 (a), (b), (c)
5. Using separation of variables, solve the wave equation $u_{t t}=c^{2} u_{x x}$ for $0<x<L$ with the following boundary conditions and initial conditions:
a) $u(0, t)=0, u(L, t)=0, u(x, 0)=0, u_{t}(x, 0)=3 \sin \frac{3 \pi x}{L}$.
b) $u(0, t)=0, u(L, t)=0, u(x, 0)=3 \sin \frac{3 \pi x}{L}, u_{t}(x, 0)=0$.
c) $u(0, t)=0, u(L, t)=0, u(x, 0)=\sin \frac{2 \pi x}{L}+7 \sin \frac{5 \pi x}{L}, u_{t}(x, 0)=0$.
d) $u(0, t)=0, u(L, t)=0, u(x, 0)=\sin \frac{2 \pi x}{L}+7 \sin \frac{5 \pi x}{L}, u_{t}(x, 0)=2 \sin \frac{3 \pi x}{L}+4 \sin \frac{6 \pi x}{L}$.
6. Using the d'Alembert solution, solve the wave equation $u_{t t}=c^{2} u_{x x}$ for $-\infty<x<+\infty$ with the following initial conditions:
a) $u(x, 0)=0, u_{t}(x, 0)=1$.
b) $u(x, 0)=0, u_{t}(x, 0)=x^{2}$.
c) $u(x, 0)=\sin x, u_{t}(x, 0)=x^{2}$.
d) $u(x, 0)=\ln \left(1+x^{2}\right), u_{t}(x, 0)=2$.
