Homework Set 1

Due: Sep 8, 2015 (in class)

1. Find the most general solution $y(x)$ to each of the following linear ODEs:

$$
\begin{aligned}
y^{\prime}+4 y & =0 & y^{\prime}-4 y & =0 \\
y^{\prime \prime}+4 y & =0 & y^{\prime \prime}-4 y & =0
\end{aligned} r y^{\prime}+3 x^{3} y=0
$$

2. Write a formula for the solution $y(t)$ of $y^{\prime \prime}+y^{\prime}+\frac{1}{4} \lambda y=0$ in each of the cases $\lambda<1$, $\lambda=1$ and $\lambda>1$. Show that if $\lambda \geq 1$, then $\lim _{t \rightarrow+\infty} y(t)=0$.
3. What is the dimension n of the space of solutions to the linear ODE $u^{\prime \prime \prime}+9 u^{\prime}=0$? Find n functions that give a basis of this vector space, and use them to write a formula for the general solution $u(t)$.
4. Say $w(t)$ satisfies the differential equation

$$
\begin{equation*}
a w^{\prime \prime}+b w^{\prime}+c w=0, \tag{1}
\end{equation*}
$$

where $a>0, b \geq 0$, and $c>0$. Let $E(t)=\frac{1}{2} a w^{\prime 2}+\frac{1}{2} c w^{2}$.
a) Without solving the differential equation, show that $E^{\prime}(t) \leq 0$.
b) Use this to show that if $w(0)=0$ and $w^{\prime}(0)=0$, then $w(t)=0$ for all $t \geq 0$.
c) Suppose that $u(t)$ and $v(t)$ both satisfy equation (11), and also $u(0)=v(0)$ and $u^{\prime}(0)=v^{\prime}(0)$. Show that $u(t)=v(t)$ for all $t \geq 0$.
5. Say $u(x, t)$ has the property that $\frac{\partial u}{\partial t}=3 u$ for all points $(x, t) \in \mathbb{R}^{2}$.
a) Find some such function - other than the trivial $u(x, t) \equiv 0$.
b) Find the most general such function.
c) If $u(x, t)$ also satisfies the initial condition $u(x, 0)=\sin 3 x$, find $u(x, t)$.
6. Haberman 1.2.3
7. Haberman 1.4.1 (a), (b), (c), (e), (f)
8. Haberman 1.4.7
9. Haberman 1.4.10
10. Haberman 1.4.11

