Homework Set 0 (Review problems)

Due: Never

1. Find the most general solution $y(x)$ to each of the following linear ODEs:

$$
\begin{aligned}
y^{\prime}+4 y & =0 & y^{\prime}-4 y & =0 \\
y^{\prime \prime}+4 y & =0 & y^{\prime \prime}-4 y & =0
\end{aligned} r y^{\prime \prime}+3 x^{3} y=0
$$

2. Let $u(t)$ be the solution of $u^{\prime}=7 u$ with initial value $u(0)=A>0$. Write down an explicit formula for $u(t)$. At what time T is $u(T)=2 A$?
3. Let $u(t)$ be the amount of a radioactive element at time t, and say initially $u(0)=A>0$. The rate of decay is proportional to the amount present, so

$$
\frac{d u}{d t}=-c u
$$

where the constant $c>0$ determines the decay rate. The half-life T is the amount of time for half of the element to decay, so $u(T)=\frac{1}{2} u(0)$. Find c in terms of T and obtain a formula for $u(t)$ in terms of T.
4. Write a formula for the solution $y(t)$ of $y^{\prime \prime}+y^{\prime}+\frac{1}{4} \lambda y=0$ in each of the cases $\lambda<1$, $\lambda=1$ and $\lambda>1$. Show that if $\lambda \geq 1$, then $\lim _{t \rightarrow+\infty} y(t)=0$.
5. What is the dimension n of the space of solutions to the linear ODE $u^{\prime \prime \prime}+9 u^{\prime}=0$? Find n functions that give a basis of this vector space, and use them to write a formula for the general solution $u(t)$.
6. Say $w(t)$ satisfies the differential equation

$$
\begin{equation*}
a w^{\prime \prime}+b w^{\prime}+c w=0, \tag{1}
\end{equation*}
$$

where $a>0, b \geq 0$, and $c>0$. Let $E(t)=\frac{1}{2} a w^{2}+\frac{1}{2} c w^{2}$.
a) Without solving the differential equation, show that $E^{\prime}(t) \leq 0$.
b) Use this to show that if $w(0)=0$ and $w^{\prime}(0)=0$, then $w(t)=0$ for all $t \geq 0$.
c) Suppose that $u(t)$ and $v(t)$ both satisfy equation (1), and also $u(0)=v(0)$ and $u^{\prime}(0)=v^{\prime}(0)$. Show that $u(t)=v(t)$ for all $t \geq 0$.
7. Let $f(\vec{r})=\|\vec{r}\|^{2}$ for all $\vec{r}=(x, y, z) \in \mathbb{R}^{3}$, and $g(\vec{r})=\frac{1}{\|\vec{r}\|}$ for all $0 \neq \vec{r} \in \mathbb{R}^{3}$. Compute $\nabla f, \Delta f, \nabla g$ and Δg.
8. Let $D \subset \mathbb{R}^{2}$ be a bounded (connected) region with smooth boundary ∂D. Given a smooth function $u(x, y)$, write $\Delta u=u_{x x}+u_{y y}$ for its Laplacian.
Suggestion: First solve this problem for a function of one variable, $u(x)$, so $\Delta u=u^{\prime \prime}$ and, say, D is the interval $\{0<x<1\}$.
a) Show that $u \Delta u=\operatorname{div}(u \nabla u)-\|\nabla u\|^{2}$.
b) If $u(x, y)=0$ on ∂D, show that

$$
\iint_{D} u \Delta u \mathrm{~d} x \mathrm{~d} y=-\iint_{D}\|\nabla u\|^{2} \mathrm{~d} x \mathrm{~d} y .
$$

c) If $\Delta u=0$ in D and $u=0$ on ∂D, show that $u(x, y)=0$ for all $(x, y) \in D$.
9. Say $u(x, t)$ has the property that $\frac{\partial u}{\partial t}=2$ for all points $(x, t) \in \mathbb{R}^{2}$.
a) Find some such function $u(x, t)$.
b) Find the most general such function $u(x, t)$.
c) If $u(x, 0)=\sin 3 x$, find $u(x, t)$.
d) If instead u satisfies $\frac{\partial u}{\partial t}=2 x t$, still with $u(x, 0)=\sin 3 x$, find $u(x, t)$.
10. Say $u(x, t)$ has the property that $\frac{\partial u}{\partial t}=3 u$ for all points $(x, t) \in \mathbb{R}^{2}$.
a) Find some such function - other than the trivial $u(x, t) \equiv 0$.
b) Find the most general such function.
c) If $u(x, t)$ also satisfies the initial condition $u(x, 0)=\sin 3 x$, find $u(x, t)$.
11. A function $u(x, y)$ satisfies $3 u_{x}+u_{t}=0$. Find an invertible linear change of variables

$$
\begin{aligned}
& r=a x+b t \\
& s=c x+d t,
\end{aligned}
$$

where a, b, c, d are constants, so that in the new (r, s) variables u satisfies $\frac{\partial u}{\partial s}=0$. [Remark: There are many possible such changes of variable. The point is to reduce $3 u_{x}+u_{t}=0$ to the much simpler $u_{s}=0$.]

