Problems in Comparison Geometry

In all problems below, (M, g) is a complete smooth Riemannian manifold, and S_k^n denotes the *n*-dimensional round sphere of radius $\frac{1}{\sqrt{k}}$, which is simply denoted S^n if k = 1.

Problems related to Bishop-Gromov relative volume comparison

- 1. Cheng's Theorem (Rigidity in Bonnet-Myers). If (M^n, g) has $\operatorname{Ric} \geq (n-1)k > 0$ and $\operatorname{diam}(M, g) = \frac{\pi}{\sqrt{k}}$, then (M^n, g) is isometric to the round sphere S_k^n .
- 2. Corollary to Grove-Shiohama Diameter Sphere Theorem. Show that if (M^n, g) has sec $\geq k > 0$ and $Vol(M, g) > \frac{1}{2} Vol(S_k^n)$, then $diam(M, g) > \frac{1}{2} diam(S_k^n)$ and hence M is homeomorphic to a sphere.
- 3. Towards a 'Volume Sphere Theorem'. Show that if (M^n, g) has $\operatorname{Ric} \geq (n-1)k > 0$ and $\operatorname{Vol}(M, g) > \frac{1}{2} \operatorname{Vol}(S_k^n)$, then M is simply-connected.

Note: It is a well-known conjecture that such a manifold (M^n, g) should be homeomorphic (or even diffeomorphic) to a sphere. This would be a *Ricci curvature* analogue of the Grove-Shiohama Diameter Sphere Theorem.

4. Show that the statement above becomes false if $\operatorname{Vol}(M, g) > \frac{1}{2} \operatorname{Vol}(S_k^n)$ is relaxed to $\operatorname{Vol}(M, g) \geq \frac{1}{2} \operatorname{Vol}(S_k^n)$, by exhibiting an example.

More context: Perelman showed that if (M^n, g) has $\operatorname{Ric} \geq (n-1)$ and $\operatorname{Vol}(M, g) \geq (1 - \delta_n) \operatorname{Vol}(S^n)$, then M is homeomorphic to S^n . Anderson constructed examples of metrics on $\mathbb{C}P^n$, among many other manifolds, with $\operatorname{Ric} \geq (n-1)$ and $\operatorname{diam}(M, g) \geq \pi - \varepsilon$, showing that the lower volume bound in the conjecture cannot be relaxed to a lower diameter bound.

Problems related to Toponogov comparison

- 5. Toponogov's original theorem. Let (M^2, g) be a surface with sec $\geq k > 0$. Any simple closed geodesic γ on (M, g) has length $l(\gamma) \leq \frac{2\pi}{\sqrt{k}}$. If equality holds for any such geodesic, then (M^2, g) is isometric to the round sphere S_k^n .
- 6. First step in proving the Grove-Shiohama Diameter Sphere Theorem. Show that if (M, g) has sec $\geq k > 0$ and diam $(M, g) > \frac{\pi}{2\sqrt{k}}$, then given any point $p \in M$, there exists a *unique* point $q \in M$ with dist(p, q) = diam(M, g).