Problems in Comparison Geometry

In all problems below, $(M, \mathrm{~g})$ is a complete smooth Riemannian manifold, and S_{k}^{n} denotes the n-dimensional round sphere of radius $\frac{1}{\sqrt{k}}$, which is simply denoted S^{n} if $k=1$.

Problems related to Bishop-Gromov relative volume comparison

1. Cheng's Theorem (Rigidity in Bonnet-Myers). If ($M^{n}, \mathrm{~g}$) has Ric $\geq(n-1) k>0$ and $\operatorname{diam}(M, \mathrm{~g})=\frac{\pi}{\sqrt{k}}$, then $\left(M^{n}, \mathrm{~g}\right)$ is isometric to the round sphere S_{k}^{n}.
2. Corollary to Grove-Shiohama Diameter Sphere Theorem. Show that if ($M^{n}, \mathrm{~g}$) has sec $\geq k>0$ and $\operatorname{Vol}(M, \mathrm{~g})>\frac{1}{2} \operatorname{Vol}\left(S_{k}^{n}\right)$, then $\operatorname{diam}(M, \mathrm{~g})>\frac{1}{2} \operatorname{diam}\left(S_{k}^{n}\right)$ and hence M is homeomorphic to a sphere.
3. Towards a 'Volume Sphere Theorem'. Show that if ($M^{n}, \mathrm{~g}$) has Ric $\geq(n-1) k>0$ and $\operatorname{Vol}(M, \mathrm{~g})>\frac{1}{2} \operatorname{Vol}\left(S_{k}^{n}\right)$, then M is simply-connected.
Note: It is a well-known conjecture that such a manifold ($M^{n}, \mathrm{~g}$) should be homeomorphic (or even diffeomorphic) to a sphere. This would be a Ricci curvature analogue of the Grove-Shiohama Diameter Sphere Theorem.
4. Show that the statement above becomes false if $\operatorname{Vol}(M, \mathrm{~g})>\frac{1}{2} \operatorname{Vol}\left(S_{k}^{n}\right)$ is relaxed to $\operatorname{Vol}(M, \mathrm{~g}) \geq \frac{1}{2} \operatorname{Vol}\left(S_{k}^{n}\right)$, by exhibiting an example.
More context: Perelman showed that if $\left(M^{n}, \mathrm{~g}\right)$ has Ric $\geq(n-1)$ and $\operatorname{Vol}(M, \mathrm{~g}) \geq(1-$ $\left.\delta_{n}\right) \operatorname{Vol}\left(S^{n}\right)$, then M is homeomorphic to S^{n}. Anderson constructed examples of metrics on $\mathbb{C} P^{n}$, among many other manifolds, with Ric $\geq(n-1)$ and $\operatorname{diam}(M, \mathrm{~g}) \geq \pi-\varepsilon$, showing that the lower volume bound in the conjecture cannot be relaxed to a lower diameter bound.

Problems related to Toponogov comparison

5. Toponogov's original theorem. Let ($M^{2}, \mathrm{~g}$) be a surface with sec $\geq k>0$. Any simple closed geodesic γ on $(M, \mathrm{~g})$ has length $l(\gamma) \leq \frac{2 \pi}{\sqrt{k}}$. If equality holds for any such geodesic, then $\left(M^{2}, \mathrm{~g}\right)$ is isometric to the round sphere S_{k}^{n}.
6. First step in proving the Grove-Shiohama Diameter Sphere Theorem. Show that if $(M, \mathrm{~g})$ has sec $\geq k>0$ and $\operatorname{diam}(M, \mathrm{~g})>\frac{\pi}{2 \sqrt{k}}$, then given any point $p \in M$, there exists a unique point $q \in M$ with $\operatorname{dist}(p, q)=\operatorname{diam}(M, \mathrm{~g})$.
