Homework Set 8

DUE: APR 6, 2016 (IN CLASS)

- 1. Bretscher Section 7.1: 1, 3, 8, 33, 46, 68
- 2. Bretscher Section 7.2: 22, 35, 42, 43
- 3. Bretscher Section 7.3: 22, 24, 33, 35
- 4. Let L_n be the *n*th Lucas number, defined by the recurrent relation

$$L_{n+2} = L_{n+1} + L_n,$$

with $L_0 = 2$ and $L_1 = 1$, so that the first few Lucas numbers are 2, 1, 3, 4, 7, 11, Find a closed formula for L_n , and use it to compute $\lim_{n \to +\infty} \frac{L_{n+1}}{L_n}$.

- 5. Find a closed formula for the *n*th element a_n of each of the following recurrent sequences:
 - (a) $a_{n+2} = a_{n+1} a_n, a_0 = 0, a_1 = 1;$
 - (b) $a_{n+2} = 2a_{n+1} a_n, a_0 = 0, a_1 = 1;$
 - (c) $a_{n+2} = 6a_{n+1} 9a_n, a_0 = 1, a_1 = -2;$
 - (d) $a_{n+2} = 2a_{n+1} 2a_n, a_0 = 0, a_1 = 1.$

In each of the above cases, compute $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n}$.

6. Read Jeff Jaregui's notes on *Error Correcting Codes*, and write solutions to the Exercises in pages 3 and 7.