Homework Set 8

Due: Apr 6, 2016 (IN CLASS)

1. Bretscher Section 7.1: $1,3,8,33,46,68$
2. Bretscher Section 7.2: 22, 35, 42, 43
3. Bretscher Section 7.3: 22, 24, 33, 35
4. Let L_{n} be the nth Lucas number, defined by the recurrent relation

$$
L_{n+2}=L_{n+1}+L_{n}
$$

with $L_{0}=2$ and $L_{1}=1$, so that the first few Lucas numbers are $2,1,3,4,7,11, \ldots$ Find a closed formula for L_{n}, and use it to compute $\lim _{n \rightarrow+\infty} \frac{L_{n+1}}{L_{n}}$.
5. Find a closed formula for the nth element a_{n} of each of the following recurrent sequences:
(a) $a_{n+2}=a_{n+1}-a_{n}, a_{0}=0, a_{1}=1$;
(b) $a_{n+2}=2 a_{n+1}-a_{n}, a_{0}=0, a_{1}=1$;
(c) $a_{n+2}=6 a_{n+1}-9 a_{n}, a_{0}=1, a_{1}=-2$;
(d) $a_{n+2}=2 a_{n+1}-2 a_{n}, a_{0}=0, a_{1}=1$.

In each of the above cases, compute $\lim _{n \rightarrow+\infty} \frac{a_{n+1}}{a_{n}}$.
6. Read Jeff Jaregui's notes on Error Correcting Codes, and write solutions to the Exercises in pages 3 and 7 .

