Homework Set 6

Due: Mar 16, 2016 (IN CLASS)

1. Bretscher Section 5.4: 1, 4, 6, 7, 21, 31, 34
2. A linear isometry is a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is that satisfies $\|A x\|=\|x\|$ for all $x \in \mathbb{R}^{n}$.
(a) Show that A is a linear isometry if and only if A is an orthogonal transformation, that is $\langle A x, A y\rangle=\langle x, y\rangle$ for all $x, y \in \mathbb{R}^{n}$.
Hint: Use the polarization identity $\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)$.
(b) Show that A is an orthogonal transformation if and only if its matrix $A \in M_{n \times n}(\mathbb{R})$ is orthogonal (in symbols, $A \in \mathrm{O}(n)$), that is, $A^{t} A=\mathrm{Id}$.
3. A matrix $A \in M_{n \times n}(\mathbb{R})$ is called skew-symmetric if $A^{t}=-A$.
(a) Give an example of a 2×2 skew-symmetric matrix.
(b) Show that the diagonal entries of any skew-symmetric matrix are zero.
(c) Show that if A is skew-symmetric, then $\langle A x, x\rangle=0$ for all $x \in \mathbb{R}^{n}$.
4. Let $\operatorname{Sym}_{n} \subset M_{n \times n}(\mathbb{R})$ be the subspace of symmetric $n \times n$ matrices and let Skew ${ }_{n} \subset$ $M_{n \times n}(\mathbb{R})$ be the subspace of $n \times n$ skew-symmetric matrices.
(a) Compute the dimension of Sym_{n}.
(b) Compute the dimension of Skew $_{n}$.
(c) Show that for all symmetric matrices $M, Q \in \operatorname{Sym}_{n}$ such that Q is invertible, there exists a matrix A satisfying the equation $A Q+Q A^{t}=M$.
Hint: Study the map $\Phi: M_{n \times n}(\mathbb{R}) \rightarrow M_{n \times n}(\mathbb{R})$ given by $\Phi(A)=A Q+Q A^{t}$.
