Homework Set 6

DUE: MAR 16, 2016 (IN CLASS)

- 1. Bretscher Section 5.4: 1, 4, 6, 7, 21, 31, 34
- 2. A linear isometry is a linear transformation $A \colon \mathbb{R}^n \to \mathbb{R}^n$ is that satisfies ||Ax|| = ||x|| for all $x \in \mathbb{R}^n$.
 - (a) Show that A is a linear isometry if and only if A is an orthogonal transformation, that is $\langle Ax, Ay \rangle = \langle x, y \rangle$ for all $x, y \in \mathbb{R}^n$. HINT: Use the *polarization identity* $\langle x, y \rangle = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2)$.
 - (b) Show that A is an orthogonal transformation if and only if its matrix $A \in M_{n \times n}(\mathbb{R})$ is orthogonal (in symbols, $A \in O(n)$), that is, $A^t A = \text{Id}$.
- 3. A matrix $A \in M_{n \times n}(\mathbb{R})$ is called skew-symmetric if $A^t = -A$.
 - (a) Give an example of a 2×2 skew-symmetric matrix.
 - (b) Show that the diagonal entries of any skew-symmetric matrix are zero.
 - (c) Show that if A is skew-symmetric, then $\langle Ax, x \rangle = 0$ for all $x \in \mathbb{R}^n$.
- 4. Let $\operatorname{Sym}_n \subset M_{n \times n}(\mathbb{R})$ be the subspace of symmetric $n \times n$ matrices and let $\operatorname{Skew}_n \subset M_{n \times n}(\mathbb{R})$ be the subspace of $n \times n$ skew-symmetric matrices.
 - (a) Compute the dimension of Sym_n .
 - (b) Compute the dimension of Skew_n .
 - (c) Show that for all symmetric matrices $M, Q \in \text{Sym}_n$ such that Q is invertible, there exists a matrix A satisfying the equation $AQ + QA^t = M$. HINT: Study the map $\Phi: M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$ given by $\Phi(A) = AQ + QA^t$.