Homework Set 10

Due: Apr 22, 2016 (IN CLASS)

1. Bretscher Section 8.3: 4, 15, 20, 21, 24
2. Find an inner product $\langle\langle\cdot, \cdot\rangle\rangle$ on \mathbb{R}^{2} such that the basis $\{(-2,3),(1,4)\}$ is orthonormal.
3. Find an inner product $\langle\langle\cdot, \cdot\rangle\rangle$ on \mathbb{R}^{3} such that the basis $\{(0,1,1),(1,0,1),(1,1,0)\}$ is orthonormal.
4. Let $A \in M_{n \times n}(\mathbb{R})$ be a nondegenerate symmetric matrix, so that $\langle\langle v, w\rangle\rangle=\langle A v, w\rangle=$ $w^{\mathrm{t}} A v$ is a (possibly indefinite) inner product. Show that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isometry of this inner product, that is, $\langle\langle T(v), T(w)\rangle\rangle=\langle\langle v, w\rangle\rangle$ if and only if $T^{\mathrm{t}} A T=A$.

Note: If $A=I d$ is the $n \times n$ identity matrix, then this shows that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an Euclidean isometry if and only if $T^{\mathrm{t}} T=I d$, i.e., $T \in \mathrm{O}(n)$ is an orthogonal matrix.
5. Use the above criterion (Problem 4) to show that for all $-1<\beta<1$,

$$
T=\frac{1}{\sqrt{1-\beta^{2}}}\left(\begin{array}{cc}
1 & \beta \\
\beta & 1
\end{array}\right)
$$

is an isometry of Minkowski space $\left(\mathbb{R}^{2}, \eta\right)$, where $\eta(x, y)=-x_{1} y_{1}+x_{2} y_{2}$ is the Lorentz inner product corresponding to the matrix $A=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$.
6. Use the above criterion (Problem 4) to find isometries of $\left(\mathbb{R}^{2}, \xi_{\theta}\right)$, where the Lorentz inner product $\xi_{\theta}(x, y)=x^{\mathrm{t}}\left(A_{\theta}\right) y$ corresponds to the matrix $A_{\theta}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right)$, in terms of the isometries T of the Minkowski space $\left(\mathbb{R}^{2}, \eta\right)$ given in Problem 5.

Hint: In Problem 5, you were dealing with the case $\theta=\pi$, i.e., $\eta=\xi_{\pi}$. To reduce this problem to the previous problem, begin by computing $B=R_{\alpha} A_{\theta} R_{\alpha}^{-1}$, where $R_{\alpha}=\left(\begin{array}{cc}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right)$ is the matrix of counter-clockwise (Euclidean) rotation by α, and then choose a convenient α in terms of θ so that $B=A_{\pi}$. Then use Problem 4 .

Hint 2: $\cos (a-b)=\cos a \cos b+\sin a \sin b$

$$
\sin (a-b)=\sin a \cos b-\sin b \cos a
$$

