Homework Set 10

DUE: APR 22, 2016 (IN CLASS)

- 1. Bretscher Section 8.3: 4, 15, 20, 21, 24
- 2. Find an inner product $\langle\!\langle \cdot, \cdot \rangle\!\rangle$ on \mathbb{R}^2 such that the basis $\{(-2,3), (1,4)\}$ is orthonormal.
- 3. Find an inner product $\langle\!\langle \cdot, \cdot \rangle\!\rangle$ on \mathbb{R}^3 such that the basis $\{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ is orthonormal.
- 4. Let $A \in M_{n \times n}(\mathbb{R})$ be a nondegenerate symmetric matrix, so that $\langle\!\langle v, w \rangle\!\rangle = \langle Av, w \rangle = w^{\mathrm{t}}Av$ is a (possibly indefinite) inner product. Show that $T \colon \mathbb{R}^n \to \mathbb{R}^n$ is an *isometry* of this inner product, that is, $\langle\!\langle T(v), T(w) \rangle\!\rangle = \langle\!\langle v, w \rangle\!\rangle$ if and only if $T^{\mathrm{t}}AT = A$. NOTE: If A = Id is the $n \times n$ identity matrix, then this shows that $T \colon \mathbb{R}^n \to \mathbb{R}^n$ is an

NOTE: If A = Id is the $n \times n$ identity matrix, then this shows that $T: \mathbb{R}^n \to \mathbb{R}^n$ is an Euclidean isometry if and only if $T^tT = Id$, i.e., $T \in O(n)$ is an orthogonal matrix.

5. Use the above criterion (Problem 4) to show that for all $-1 < \beta < 1$,

$$T = \frac{1}{\sqrt{1 - \beta^2}} \begin{pmatrix} 1 & \beta \\ \beta & 1 \end{pmatrix}$$

is an isometry of Minkowski space (\mathbb{R}^2, η) , where $\eta(x, y) = -x_1y_1 + x_2y_2$ is the Lorentz inner product corresponding to the matrix $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

6. Use the above criterion (Problem 4) to find isometries of $(\mathbb{R}^2, \xi_\theta)$, where the Lorentz inner product $\xi_\theta(x, y) = x^{t}(A_\theta)y$ corresponds to the matrix $A_\theta = \begin{pmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{pmatrix}$, in terms of the isometries T of the Minkowski space (\mathbb{R}^2, η) given in Problem 5.

HINT: In Problem 5, you were dealing with the case $\theta = \pi$, i.e., $\eta = \xi_{\pi}$. To reduce this problem to the previous problem, begin by computing $B = R_{\alpha}A_{\theta}R_{\alpha}^{-1}$, where $R_{\alpha} = \begin{pmatrix} \sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha \end{pmatrix}$ is the matrix of counter-clockwise (Euclidean) rotation by α , and then choose a convenient α in terms of θ so that $B = A_{\pi}$. Then use Problem 4.

HINT 2: $\cos(a - b) = \cos a \cos b + \sin a \sin b$ $\sin(a - b) = \sin a \cos b - \sin b \cos a.$