Homework Set 9

Due: Apr 6, 2017 (in class)

- 1. Compute the Jacobian of the following transformations:
 - a) Polar coordinates: $G: \mathbb{R}^2 \to \mathbb{R}^2$, $G(r,\theta) = (r\cos\theta, r\sin\theta)$
 - b) Cylindrical coordinates: $G: \mathbb{R}^3 \to \mathbb{R}^3$, $G(r, \theta, z) = (r \cos \theta, r \sin \theta, z)$
 - c) Spherical coordinates: $G: \mathbb{R}^3 \to \mathbb{R}^3$, $G(r, \theta, \phi) = (r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi)$
 - d) $G: \mathbb{R}^3 \to \mathbb{R}^3$, G(u, v, w) = (au + 1, bv 2, cw + 3), where a, b, c are constants.
 - e) $G: \mathbb{R}^2 \to \mathbb{R}^2$, $G(u, v) = \left(\frac{v-u}{2}, \frac{u+v}{2}\right)$
- 2. Find the volume of the solid $\Omega \subset \mathbb{R}^3$ bounded by the surface given in spherical coordinates by the equation $r = (\sin \phi)^{1/3}$.
- 3. Find the volume inside the cylinder $x^2 + y^2 = 1$, below the plane x + y + z = 2, above the xy-plane and in the first octant.
- 4. Let Ω be the triangle with vertices at the origin, (2,0) and (0,2). Use the change of variables u=y-x, v=y+x, to evaluate the integral $\iint_D e^{\frac{y-x}{y+x}} dA$
- 5. Compute the following line integrals of functions and vector fields:
 - a) $\int_{\gamma} f(x, y, z) ds$, where $\gamma(t) = (t, 1 t, 0), 0 \le t \le 1$, and f(x, y, z) = 2x + 3y
 - b) $\int_{\gamma} f(x, y, z) ds$, where $\gamma(t) = (\cos t, \sin t, 2t), 0 \le t \le 2\pi$, and $f(x, y, z) = \sqrt{x^2 + y^2}$
 - c) $\int_{\gamma} \vec{F} \, d\gamma$, where $\gamma(t) = (t^2, t, -t)$, $0 \le t \le 1$, and $\vec{F}(x, y, z) = (xy, -x, yz)$
 - d) $\int_{\gamma} \vec{F} \, d\gamma$, where $\gamma(t) = (\sin t, \cos t, t), \ 0 \le t \le \pi$, and $\vec{F}(x, y, z) = (3z, y^2, 4x)$