
12 Gradients and optimization

12.1 Vectors

Think of a vector as an arrow drawn from one point in the plane or three dimensional
space to another. The arrow from (1, 1) to (2, 3) is shown in the figure. The only
tricky thing about the definition is that we don’t care where the arrow is drawn, we
only care about its magnitude (length) and direction. So for example the dashed
arrow represents the same vector, started at the point (5/2, 0) instead of (1, 1). In
other words, the vector represents the move from the beginning to the end of the
arrow, regardless of the absolute location of the beginning point.

(2,3)

(1,1)

The vector of unit length in the x-direction is called î, the vector of unit length in the
y-direction is called ĵ, and, if we’re in three dimensions, the vector of unit length in
the z-direction is called k̂. A vector that goes a units in the x-direction and b units
in the y-direction is denoted âi+ b̂j. It’s called that because you can add vectors and
multiply them by real numbers (see definition below). For example, the vector in the
picture should be written î+ 2ĵ.

Definition of adding vectors. First make one move, then make the
other. You can do this by sliding one of the arrows (don’t rotate it!) so
it starts where the other one ends, then following them both. If you add
âi+ b̂j to ĉi+ dĵ you get (a+ c)̂i+ (b+ d)̂j.
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Definition of multiplying a vector by a real number. Don’t change
the direction, just multiply the length. As a formula: multiply âi + b̂j
by c you get aĉi + bĉj. This easy formula hides an important fact: if
you mutliply both the î and ĵ coe�cients by the same real number, the
direction doesn’t change. That’s why the two vectors in the right-hand
figure below are on top of each other.

The left-hand side of the figure below shows the vector î+2ĵ being added, tip to tail,
to the vector î � ĵ. The result is the vector 2̂i + ĵ show by the dotted arrow. In the
right-hand figure, the vector î� ĵ is multiplied by the real number

p
6 which is a little

under 21/2.

(3,2)

(1,1)

(2,3)

The length of a vector can be computed by the Pythagorean Theorem. The length
of âi + b̂j is

p
a2 + b2. For example, the vector î + 2ĵ which appears in the previous

figures has length
p
5. The length of the vector v is denoted |v|. A unit vector is any

vector whose length is 1. Often we want to know a unit vector in a given direction:
what vector, having the same direction as v, has length 1? Answer: divide v by |v|
(that is, multiply v by the reciprocal of its length). Self-check: what is the unit vector
in the direction of our favorite example vector, v = î + 2ĵ ? The answer is posted
in a link on Canvas (first student who actually wants to look at it, tell me and I’ll
activate the link).
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The dot product

The dot product of the vectors âi + b̂j and ĉi + dĵ is defined to be the number (it’s
not a vector!) ac+ bd. You’ll see next class why this quantity is important. The last
thing you need to know is a fact: the dot product of two vectors v and w is equal to
the product of the lengths times the cosine of the angle ↵(v,w) between them:

v ·w = |v||w| cos↵(v,w) (12.1)

Again, there is something important hidden in the content of this formula. You
already know one way of computing the dot product: multiply corresponding compo-
nents and add them. The formula gives you another way. The first way is algebraic.
The second way is completely geometric: you could do it by seeing only the picture.
The dot product theorem says that these two computations produce the same result.
Take a minute to register this, because it will come up in applicaitons, problem sets
and, yes, exams.

Parallel vectors

Vectors in the same direction are called parallel. How do you tell whether v = âi+ b̂j
is parallel to w = ĉi + dĵ ? This is the same as saying you can multiply one vector
by real number to get the other. This is the same as asking when the fraction c/a is
equal to d/b. To test this you crossmultiply, arriving at the condition

ad� bc = 0 . (12.2)

Three or more dimensions (optional paragraph)

In three dimensions a generic vector will be the sum of three components: âi+ b̂j+ck̂.
The basic definitions are still the same. A vector v is still defined as having a length
and a direction. Both the algebraic and the geometric formulae for the dot product
look analogous to they way they looked in two dimensions and give the same answer.
Addition of vectors and multiplication of a vector by a real number still have both
an algebraic and a geometric definition that give the same result. In fact, you define
vectors in any dimension. You can’t visualize it, and you run out of letters after
î, ĵ, k̂, but all the math still works the way it did in two dimensions. Our treatment is
very minimal: we will stick to two dimensions. If vector calculus intrigues you then
consider taking Math 114.
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12.2 The gradient

Let z be a function of x and y. Think of this for now as the elevation at a point x units
east and y units north of a central point. Pick a point (x

0

, y
0

), let a = (@z/@x)(x
0

, y
0

)
and let b = @z/@y)(x

0

, y
0

). Using these we can figure out the rate of elevation increase
for a hiker traveling on the path (x(t), y(t)). By the multivariate chain rule, if the
hiker is at the position (x

0

, y
0

) at some time t
0

, then the rate of increase of the hiker’s
elevation at time t

0

will be ax0(t) + by0(t) evaluated at t = t
0

.

Here’s the important point. If we calculate a and b just once, we can figure out the
rate of elevation gain of any hiker traveling with any speed in the x- and y-directions.
The vector âi + gĵ is called the gradient of z at the point (x

0

, y
0

) and is denoted
rz(x

0

, y
0

) or just |rz|. This definition is given in a box in the middle of page 833 in
Section 14.5 of the textbook:

rz(x
0

, y
0

) =
@z

@x
(x

0

, y
0

) î+
@z

@y
(x

0

, y
0

) ĵ .

This leads to the idea of the directional derivative: what is the rate of elevation
gain per unit traveled in any direction? The key here is “per unit traveled”. The
unit vector w in the direction making an angle of ✓ with the positive x-direction is
(cos ✓)̂i + (sin ✓)̂j. Therefore, a hiker traveling at unit speed in this direction gains
elevation at the rate of a cos ✓ + b sin ✓. That’s the dot product rz · w. THIS IS
THE MAIN REASON WE COVER VECTORS AND DOT PRODUCTS IN THIS
COURSE.

Here are some conclusions you can draw from all of this. Let L = |rz(x
0

, y
0

)| be the
length of the gradient vector of z at the point (x

0

, y
0

). Now consider all directions the
hiker could possibly be traveling: which one maximizes the rate of elevation gain? Let
↵ be the angel between the gradient vector and the hiker’s direction in the x-y plane.
We have just seen that the rate of elevation gain per unit motion in the direction w
is rz ·w. The length of rz is L and the lngth of w is 1, so by formula (12.1), the dot
product is L cos↵. This cosine is at most 1 and is maximized when the angle is zero, in
other words, when the hiker’s direction is parallel to the gradient vector. In that case
the directional derivative is L. If the hiker is going in a direction making an angle ↵
with the gradient then the rate of elevation gain per unit distance traveled is L cos↵.
If ↵ is a right angle then this rate is zero. We can summarize these observations in a
theorem, which constitutes more or less the “Properties of the directional derivative”
stated in a box on page 834.
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Gradient Theorem:

(i) The direction of greatest increase of a function z(x, y) at a point (x
0

, y
0

)
is the direction of its gradient vector rz(x

0

, y
0

). The rate of increase per
unit distance traveled in that direction is the length of the gradient vector
which is given by

L =

s
@z

@x
(x

0

, y
0

)2 +
@z

@y
(x

0

, y
0

)2 .

(ii) In general the directional derivative in a direction making angle ↵
with respect to the gradient direction is equalt to L cos↵.

(iii) In particular, when ↵ is a right angle, we see that the rate of elevation
increase in direction ↵ is zero.

This theorem is, more or less what’s in the box on page 834 entitled “Properties
of the directional derivative”. Mull it over for a minute. By computing partial
derivatives, we can stake out the‘ direction of maximum ascent, and it will have
the property that the direction of zero elevation gain is at right angles to it (also,
the direction of maximal descent is exactly opposite). Remember level curves? Along
these, the elevation is constant. Therefore, traveling in these directions makes the rate
of elevation gain zero. We see that the tangent to the level curve must be in the zero
gain direction, that is, perpendicular to the gradient. This is shown in Figure 14.31 on
page 835. A real life illustration is shown in the picture on page 831 of the textbook.
A contour map shows contours of an actual mountainside in Yosemite National Park.
These are perpendicular to the directions of steepest ascent and descent. You can see
this because streams typically flow in the directions of steepest descent. The streams
and the level contours are marked on the map and do, indeed, look perpendicular.

Some rules for computing

We won’t need a lot of rules for computing gradients because we’ll always be able to
compute them by hand but it is good to look them over once. They’re collected in
a box on page 836 of the textbook. Basically all the rules that work for derivatives
work for gradients because in each component separately (the î component, etc.) the
gradient is a kind of all-encompassing partial derivative, and partial derivatives obey
these laws.
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12.3 Optimization

One-paragraph review of univariate optimization

Here is a brief review of optimization in one variable (also known as solving max-
min problems) which you can skip if you don’t need. Suppose you want to find the
maximum of a di↵erentiable function f on an interval [a, b]. If the maximum occurs
at a point x in the interior of the interval then f 0(x) must be zero (if f 0(x) > 0 then
a point just to the right of x will have a higher value of f , whereas if f 0(x) < 0
then a point just to the left of x will have a higher value of f). Therefore, to find
the maximum, you list all the critical points (points where f 0 = 0 and both the
endpoints, and see where among these points f has the greatest value. It is the same
with minima. List all the critical points of f and the endpoints, and determine the
least value of f among this list of points.

The maximum and minimum of f on the
interval shown must occur either at the
critical points (solid dots) or at the end-
points (open dots). In fact the maximum
value (upper dashed line) and minimum
value (lower dashed line) occur at critical
points in this case.

Optimization along a curve

Now switch gears and consider a function f(x, y) of two variables. There are two
kinds of optimization problems that commonly occur. One is to find the maximum
or minimum of f on a curve. The second is to find the maximum or minimum of f
over a region in the plane.

Conceptually, optimization along a curve is easy: read f “as you go along the curve”;
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find the critical points where the derivative of the readout is zero; the maximum will
have to occur at one of these places; check them all. Computationally, the tricky
part is to describe the curve in equations, then use those equations to compute the
derivative along the curve.

The description of a curve � can take one of three forms. It could be given by some
function y = g(x). It could be given parametrically by ((x(t), y(t)). Finally, and most
commonly, � could be given implicitly, meaning it is the solution set to the equation
H(x, y) = 0 for some function H. We treat these in the order: parametric, function,
implicit, because each computation relies on the previous one.

Parametric case: the derivative along (x(t), (y(t)).

If the curve � is paramterized as (x(t), y(t)), then the derivative of f along � is just
rf · v where v is the velocity vector x0(t)̂i + y0(t)̂j. In this case, finding the points
where the derivative of f along � vanishes boils down to solving

x0(t)
@f

@x
+ y0(t)

@f

@y
= 0 . (12.3)

Self-check: what does it mean that the derivative of f along the curve (x(t), y(t)) is
given by (12.3)? This formula computes the rate of change of what with respect to
what?

Function case: the derivative along y = g(x).

If � is paramtrized by y = g(x) then you can use the parametric description x =
x, y = g(x) so that this equation becomes

@f

@x
+ g0(x)

@f

@y
= 0 . (12.4)

Self-check: again, this is the rate of change of what with respect to what?

Implicit case: the derivative along H(x, y) = 0.

Finally, suppose that � is given implicitly by H(x, y) = 0. Recall that we know
how to find the slope dy/dx of the tangent line to the level curve H(x, y) = 0. By
implicit di↵erentiation, we computed dy/dx = �H

x

/H
y

. Therefore we can apply
equation (12.4) with g0(t) = �H

x

/H
y

. We get @f/@x � (H
x

/H
y

)@f/@y = 0, which
simplifies slightly to

H
y

@f

@x
�H

x

@f

@y
= 0 . (12.5)
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IMPORTANT GEOMETRIC INTERPRETATION OF (12.5):

The gradient of H is H
x

î + H
y

ĵ. The gradient of f is f
x

î + f
y

ĵ. The test for these
to be parallel is given by applying (12.2) to these two vectors. This results precisely
in (12.5). In other words:

The critical points of f along a level curve of H are those points where
the gradients of f and H are parallel.

Pictorial example: The figure shows a black constraint curve, H(x, y) = 0, along
with contours for another function f(x, y). The maximum of f along the curve
H(x, y) = 0 is the place where the level curves, when you move from higher to lower,
just hit the black curve. At this point, the curves are tangent and the gradients are
parallel. The single arrow represents the directions of both gradients.
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12.4 Optimization over a region

If the maximum of f on the region R occurs at an interior point, then both partial
derivatives must vanish there. Why? If one of the partials, say @f/@x is positive,
then the value of the function is just to the right is greater. If, say @f/@y is negative,
then the value of f just below is greater. And so forth. Asking that both partial
derivatives vanish is the same as asking that the gradient vanishes. Therefore, we
have the following procedure.

To find the maximum, find all the places inside R where the gradient
vanishes, compute f at these places and take the maximum among these,
and compare to the maximum of f on the boundary of R.

Note: the last part, finding the maximum on the boundary of f , unless this boundary
is very simple, relies on knowing how to do constrained optimization.

Example: What is the maximum of the function x+ 2y on the region R where the
unit circle intersects the first quadrant?

Solution: The gradient of f(x) = x + 2y is the vector î + 2ĵ. This never vanishes
so the maximum of f is NOT in the interior of the unit circle. The boundary of the
region R is made of three pieces: the line segment on the x-axis from the origin to
(1, 0); the line segment on the y-axis from the origin to (0, 1); the arc of the unit
circle in the first quadrant. The maximum of f on each line segment occurs at the
endpoint away from the origin, with values 1 and 2 respectively.

To find the maximum of x + 2y on the arc x2 + y2 = 1, we compute the gradient of
x2 + y2 which is 2x̂i + 2yĵ. This is parallel to rf = î + 2ĵ when the cross-multiple
2(2x) � 1(2y) = 0. This happens when y = 2x. Plugging in x2 + (2x)2 = 1, we find
that x = 1/

p
5 and y = 2/

p
5. There, f(x, y) = x + 2y = 1/

p
5 + 4/

p
5 = 5/

p
5 =p

5 ⇡ 2.23606. This beats all the other maxima, therefore the global maximum of
x+ 2y in the unit circle in the first quadrant is

p
5 and is achieved at (1/

p
5, 2/

p
5).

Example: Where is the maximum of f(x, y) = x/(1+x2+y2) on the disk of radius 2?
The critical points on the interior are where both partial derivatives of f vanish. The
partial derivatives, when expressed with denominator (1 + x2 + y2)2 have respective
numerators �2xy and 1+y2�x2. Setting these equal to zero gives the points (±1, 0);
here f(x, y) = ±1/2. On the boundary, the denominator is 5 so f can be no more
thna 2/5, therefore the overall maximum is 1/2 at the point (1, 0).
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Application

Let’s go back to the pizza and FroYo example from Unit 11.4, but without numbers.
Let H(x, y) be the utility of a consumer who gets x ounces of pizza and y pints of
FroYo. Let f(x, y) be the cost to me of producing x ounces of pizza and y pints of
Froyo. For my ten dollar family bargain, I need to o↵er a pair that is on the curve
H(x, y) = c because that’s what Burger Chef is o↵ering and I will lose customers if
my pizza-FroYo combo is less desirable than theirs. But my function f is di↵erent
from Burger Chef’s because my prodution line is di↵erent. Question: what bundle
should I o↵er?

In mathematical terms, What value of (x, y) on the curve H(x, y) = c minimizes
f(x, y)? We just saw the answer to that: it is either an endpoint of the curve or a
place where rf is parallel to rH. Let’s interpret the parallel gradients in economic
terms. Parallel gradients at a point occur when the tangent lines to the level curves
are the same at that point. These tangents tell me the marginal rate of substitution.
Remember the FroYo example. The tangent to H(x, y) = 30 at the point (60, 1/2)
tells me the marginal rate of substitution. Consumers at this point are indi↵erent
between another ounce of pizza and another 1/120 point of FroYo. The tangent to
the level curve of f at this point tells me the rate of substitution for costs: how many
extra pints of FroYo can I make from the cost savings on each fewer ounce of pizza?
If the two slopes are not the same, then I can slide along the customers indi↵erence
curve one direction or the other, decreasing my costs while maintaining the same
customers. The only way I can be at the minimim cost point on the consumers’
indi↵erence curve is to be at a point where the slopes are parallel.

Example: Using the numbers H(x, y) = xy from the original pizza and FroYo
example, suppose my cost function is a simple linear function: it coses 10 cents to
produce each ounce of pizza and $1 for each pint of FroYo. Thus f(x, y) = (0.1)x+y.
The gradient of a linear function is constant: rf = (1/10)̂i + ĵ. The gradient of
H is yî + xĵ. These are parallel when y � x/10 = 0. At what point on the curve
H(x, y) = 30 does this occur? We solve

x = 10y

xy = 30

to get y =
p
3 and x = 10

p
3. Look up the approximate value

p
3 = 1.732 . . . on your

cheatsheet. In other words, the optimum combo meal for me to sell is (roughly) a 17
and a third ounce pizza and a pint and three quarters of FroYo.
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