
11 Partial derivatives and multivariable chain rule

11.1 Basic defintions and the Increment Theorem

One thing I would like to point out is that you’ve been taking partial derivatives
all your calculus-life. When you compute df/dt for f(t) = Ce�kt, you get �Cke�kt

because C and k are constants. The notation df/dt tells you that t is the variables
and everything else you see is a constant. If we use the notation f 0 instead, then we
are relying on your knowing which is the independent variable. It’s usually called
something like “t”, not “C” or “k”, but every now and then we end up computing
df/dk or df/dC, so watch out! The only rule is: everyone should understand which
is the independent variable.

So now, studying partial derivatives, the only di↵erence is that the other variables
aren’t constants – they vary – but you treat them as constants anyway. It’s not a big
di↵erence because really, what is a constant? It’s always possible to imagine some
quantity changing. Mathematically we just need to be precise about what is holding
steady and what is changing. In this section, only one variable at a time will change.
Then in the next section (chain rule), we’ll change more than one independent variable
at a time and keep track of the total e↵ect on the independent variable.

We assigned plenty of MML problems on this section because the computations aren’t
much di↵erent than ones you are already very good at. You can read the basics in
Section 14.3. I will include one example as a self-check; if you are not able to cover
up the answer and figure it out pretty easily, then you need to go back and re-read
Section 14.3.

Example: Let f(x, t, q) =
eq � 1

1 + xtq
. What is

@f

@t
at the point (3, 1, 1) and what does

this quantity signify?

Answer: treating everything other than t as a constant, by either the chain
rule or the quotient rule you get �xq(eq � 1)/(1 + xtq)2. Evaluating at
the point (3, 1, 1) gives �3(e� 1)/16.

This means that if t is changes by a small amount from 1 while x is held
fixed at 3 and q at 1, the value of f would change by roughly 3(e� 1)/16
times as much in the opposite direction.
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The Increment Theorem

By now I’m sure you remember the linearization in one-variable. The value of f(x)
near the point x = a is well approximated by L(x) = f(a) + f 0(a) · (x� a). Suppose
we now want to approximate f(x, y) near a point (a, b) where we know the value.
Suppose, in fact that we change only x but not y. Then we might as well treat y as
a constant and write

f(x+�x, y) = f(x, y) + (�x) · @f
@x

(x, y) .

It’s a partial derivative, not a total derivative, because there is another variable y
which is being held fixed. Similarly, if we moved only y we would have

f(x, y +�y) = f(x, y) + (�y) · @f
@y

(x, y) .

I hope it doesn’t seem like too much of a leap to say that if you move both x and y
you’ll get both of these e↵ects:

f(x, y +�y) = f(x, y) + (�x) · @f
@x

(x, y) + (�y) · @f
@y

(x, y) . (11.1)

Equation (11.1) is called the Increment Theorem in the textbook and appears as
Theorem 3 on page 818 (Section 14.3). You might wonder whether it’s OK to assume
that you can just add the two e↵ects from moving x and moving y. In fact, after you
move x, you really should be computing the y increment according to the @f/@y at
the new location, (x+�x, y). However, it’s only an approximntion anyway, and the
new partial derivative is close enough to the old that the computation with the new
partial derivative matches the computation with the old partial derivative to within
the error you already introduce by linearizing.

Example: About how much does x2/(1 + y) change if (x, y) changes from (10, 4)
to (11, 3)? Here �x = 1 and �y = �1. We compute f

x

= 2x/(1 + y) and f
y

=
�x2/(1 + y)2 so so f

x

(10, 4) = 4 and f
y

(10, 4) = �4. Thus,

�f ⇡ f
x

�x+ f
y

�y = 4(1) + (�4)(�1) = 8 .

In fact, f changes from 20 to 30.25 so the 8 was kind of a crude estimate, but that’s
because �x and �y were pretty big. If we choose 0.1 and �0.1 instead, we get a
linear estimate of �f = 0.8 which is very close to the actual 0.818 . . ..
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Application: marginal rates

Suppose the cost of a proposed building is a function f(A, q, `) where A is the area
of usable space in square feet, q is an index of the quality (thickness of walls, gauge
of wiring, level of insulation, quantity of lighting, etc.) and ` is a location param-
eter measuring, for example, the desirability of the location. The average cost per
square foot for a given proposed building is, by definition, f(A, q, `)/A. However,
this statistic is far less useful than the marginal cost per square foot, that is, @f/@A.
That’s because most decisions are about whether to put a few extra dollars into one
of these categories or to trim a few bucks from another category. Therefore, it is most
useful to know how many dollars more you will spend or save with each square foot,
rather than what all the square footage costs that is already in all the proposals being
compared.

Example: The total number P of people exposed to an recurring ad is a function of
its market share, M , and the length of time, t, that stays in rotation5. The marginal
increase in exposure per time run is @f/@t. The right time to yank the ad is when
v · @f/@t drops below the cost per time to run the ad, where v is the value in dollars
per unit of exposure. Note that the units match: v has units of dollars per exposure,
@f/@t has units of exposure per time and the cost to run the ad is priced in dollars
per time: ($/exp) (exp/t) = $/t.

Note: the notion of marginal rates should already be familiar from univariate calculus.
There isn’t much added here, except to say that it makes sense to compute marginal
rates when there are many quantities that could vary, by varying only one.

Branch diagrams

In applications, computing partial derivatives is often easier than knowing what par-
tial derivatives to compute. With all these variables flying around, we need a way of
writing down what depends on what. We do this by writing a branch diagram. Here
are some common ones.

5It is not just the product of these because the longer it runs, the more redundancy there is in
people seeing it multiple times.
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f

x

y

The branch diagram
for the ordinary
chain rule.

t

z

x y

w is a function of x
and y, both of which
are functions of a sin-
gle variable t (see
page 823 of the text-
book).

f

y

x

z depends on x
and y but y is
really a func-
tion of x

y

w

z

x

w is a function of
x, y and z, but z is
really a function of
the other two.

Any variable at the top is an dependent variable. Any variable at the bottom is
an independent variable; these drive the other variables and are the only ones we
tweak directly. The variables in the middle are called intermediate variables. The
independent variables drive them and they drive the dependent variables.

11.2 Chain rule

Think about the ordinary chain rule. A useful metaphor is that it is like a gear
assembly6: y depends on u, which in turn depends on x. Each unit increase of x
increases u by u0(x) many units. Each unit increase of u inceases y by y0(u) units.
Therefore each unit increase in x produces u0(x) · y0(u) units increase in y. That’s
what’s going on in the first branch diagram.

In the second diagram, there is a single independent indpendent variable t, which we
think of as a gear driving both x and y, while both x and y drive z. I am going to
try now to explain why

dy

dt
=

@y

@u

du

dt
+

@y

@v

dv

dt
. (11.2)

6OK, you got me, that’s a simile not a metaphor.
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When t increases by �t, both u and v increase. The increases are roughly (�t)(du/dt)
and (�t)(dv/dt) respectively. As we just saw at the end of the previous section (with
the function z(x, y)) each increase in u produces an increase in y that is @y/@u times

as great. So the increase in u of �t
du

dt
gives gives an increase in y of roughly �t

du

dt

@y

@u
.

Simultaneously, the increase in t has produced an increase in v which produces another

increase in y of roughly �t
dv

dt

@y

@v
. Thus the total increase in y is roughly

�t


@y

@u

du

dt
+

@y

@v

dv

dt

�
.

This means that the rate of change of y per change in t is given by equation (11.2).
Note that we use partial derivative notation for derivatives of y with respect to u and
v, as both u and v vary, but we use total derivative notation for derivatives of u and v
with respect to t because each is a function of only the one variable; we also use total
derivative notation dy/dt rather than @y/@t. Do you see why? Partial derivative
notation would mean that t was changing while something else was being held fixed,
which is not the case. Rather, all variables are functions of the single variable t.

That’s the basic story. There are lots of variations, depending on how many in-
dependent variables there are (up till now there has been only one, all the others
ultiimately being functions of the one), how many intermediate variables and how
they are related.

Where to evaluate?

The one thing you need to be careful about is evaluating all derivatives in the right
place. It’s just like the ordinary chain rule. For example, in (11.2), the derivatives
du/dt and dv/dt are evaluated at some time t

0

. The partial derivative @y/@u is
evaluated at u(t

0

) and the partial derivative @y/@v is evaluated at v(t
0

).

Example: Chain rule for f(x, y) when y is a function of x

The heading says it all: we want to know how f(x, y) changes when x and y change
but there is really only one independent variable, say x, and y is a function of x. This
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is captured by the third of the four branch diagrams on the previous page. Applying
the chain rule gives

df

dx
=

@f

@x
+

@f

@y
· y0 . (11.3)

The notation really makes a di↵erence here. Both df/dx and @f/@x appear in the
equation and they are not the same thing!

Derivative along an explicitly parametrized curve

One common application of the multivariate chain rule is when a point varies along
a curve or surface and you need to figure the rate of change of some function of the
moving point. The classical economics application is that price and quantity are mov-
ing together along the demand curve and we want to figure out how revenue changes
along this curve (and in particular, we want to find where the revenue is maximized).
In this section we solve the problem when the curve is known explicitly, saving the
case of implicitly defined curves until we have discussed implicit di↵erentiation.

Suppose a point varies along a curve as a function of time, and its coordinates are
explicitly known: the coordinates at time t are (x(t), y(t)). The rate of change of the
function g(x, y) with respect to time along the curve is given by the formula we just
computed: x and y are functions of t and g is a function of x and y, so

dg

dt
=

@g

@x

dx

dt
+

@g

@y

dy

dt
. (11.4)

I hope you realize this is the exact same equation as (11.2) but with the letter g in
place of y, and x and y in place of u and v.

11.3 Implicit di↵erentiation

The chain rule helps us to understand ordinary implicit di↵erentiation. In Section 14.4
on page 826 the textbook re-explains finding the slope of an implicitly defined curve
(first discussed in the textbook in Section 3.7). Here follows a quick recap of this.
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Slope of an implicitly defined curve

Suppose a curve is defined by F (x, y) = 0. What is the slope of its tangent line?
That’s the same as asking, if we treat y as a function of x along the curve, what is
dy/dx? This is just (11.3) run backwards – we know that df/dx = 0 and want to
solve for y0. Di↵erentiating the relation F (x, y) = 0 with respect to x, where y is an
intermediate variable that is a function of x, the chain rule gives 0 = F

x

+ F
y

dy/dx.
Solving for dy/dx gives (see page 826 of the textbook):

dy

dx
= �F

x

F
y

. (11.5)

Derivative along an implicitly parametrized curve

Now suppose a curve is defined implicitly by F (x, y) = 0. How fast does the function
g(x, y) change along the curve? We had better decide: how fast does g(x, y) change
with respect to what? Suppose we treat y as a function of x along the curve and ask
for dg/dx. Using the chain rule for this case (11.3)

dg

dx
=

@g

@x
+

@g

@y

dy

dx

=
@g

@x
� @g

@y

@F/@x

@F/@y
.

In the last line, we used the expression for dy/dx given by implicit di↵erentation (11.5).

Implicitly defined surfaces

This is just like curves defined by an equation, only now there are three variables.
Any equation F (x, y, z) = 0 defines a surface. If any two vary freely, the third changes
as a function of the other two. When this happens, we can ask for the rate of change
of one with respect to another. What should @z/@x mean in this context? It means:
consider z as a function of x and y, then find out the rate of change in z when x
varies, y is held constant, and z changes in order still to satisfy the equation. Please
take a monent to think this through now.
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Computationally, how do we find @z/@x when F (x, y, z) = 0? We di↵erentiate,
keeping in mind the branch diagram. Letting w denote F (x, y, z), it is the same as
one we have seen before:

y

w

z

x

The variables vary in such a way that w remains at zero. Taking the partial derivative
with respect to x of the equation w = 0 gives

0 =
@w

@x
(x, y, z) =

@F

@x
+

@F

@z
+

@z

@x
.

Solving for @z/@x we see that
@z

@x
=

�F
x

F
z

.

This looks exactly the same as for two variables, x and z only; compare to equa-
tion (11.5). This is not a coincidence. If z is a function of x and y and we hold y
constant, then y is playing a similar role to the constant k in the function ekx. The
problem really does reduce to the two variable problem. Let’s try it on Example 4
from Section 14.3 of the textbook.

Example: Find @z/@x when the equation F (x, y, z) = x+ y + ln z � yz = 0 defines
z as a function of x and y. We compute F

x

= 1 and F
z

= 1/z � y therefore

@z

@x
=

�1

1/z � y
=

z

yz � 1
.

You should compare this to how the book does it (page 813); I think this way is
simpler than the book’s but either is OK.
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11.4 Featured application: indi↵erence curves

Remember level curves from our first day of multivariate calculus? They’re back, in
an economic application, under the name of “indi↵erence curves”. Suppose that the
independent variables x and y represent quantities of two di↵erent things that will
rival each other for importance in a single scenario.

Example 1: x is the horsepower of a car and y is its MPG.

Example 2: x is ounces of pizza at a meal and y is pints of FroYo.

An indi↵erence curve is a set of points in the x-y plane corresponding to bundles that
the agent (often a consumer) likes equally well. The two examples above are taken
from Berheim and Whinston (current textbook for BEPP 250). The indi↵erence curve
for horsepower versus fuel economy is taken from actual data. The indi↵erence curve
for pizza versus FroYo is a made up model. In either case, the indi↵erence curves are
just level contours for a utility function u(x, y). The food example uses the utility
function u(x, y) = xy and shows indi↵erence curves of xy = 10, xy = 20 and xy = 30.

Indi↵erence curves are important for several reasons, one of which is that they describe
incentives and reactions to changes in the quantities x and y. The marginal rate of
substitution is the amount of x an agent would be willing to give up in order to
increase y by one unit. This is not a static quantity, rather it depends on the present
levels of x and y. If a group of diners has 10 pints of FroYo and only three ounces
of pizza, they will not be willing to give up much pizza for one more pint of Froyo,
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whereaas a group with 60 ounces of pizza and half a pint of FroYo might well give up
a lot of pizza for a pint of FroYo.

Two points on the same indi↵erence curve, such as (60, 1/2) and (20, 3/2), determine
an equivalence of utility. The slope of the line segment between these two points is a
ratio for a trade the agent is willing to make in either direction (see the straight line in
the figure). But the point (20, 3/2) is quite far from (60, 1/2) and does not represent
the rate of substitution if the consumer is able to make continuous small adjustments.
As the point (x, y) on the curve u(x, y) = 30 approaches (60, 1/2), the slope of the
line segment approaches the slope of the tangent line to the curve u(x, y) = 30 at
(60, 1/2) (dashed line in the figure).

Mathematically, the marginal rate of substitution is defined to be the negative of the
slope of this tangent line (negative because the slope represents one quantity going
down while the other goes up). This slope is just dy/dx, which we know how to
compute via implicit di↵erentiation. In the pizza and FroYo example, the level curve
is xy = 30 and implicit di↵erentiation gives y + x(dy/dx) = 0. Thus dy/dx = �y/x.
At the point (60, 1/2), this gives a marginal rate of substitution of 1/120 pint of
FroYo per ounce of pizza. On the other hand, at the point (3, 10), the marginal rate
of substitution is 10/3 pints of FroYo per ounce of pizza. Whether or not you think xy
is a reasonable utility function for this scenario, this model sheds light on consumer
behavior and how to model it.
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