
8 Introduction to differential equations

8.1 Modeling with differential equations

A differential equation is an equation, involving derivatives, in which the quantity
that you must solve for in order to make the equation true is an unknown func-
tion. A classical example is Malthusian population growth. This simple population
growth model (due to Malthus) postulates that the (instantaneous) rate of growth of
a population is proportional to its present size. If we let A(t) denote the size of the
population at time t, then the equation representing this is

dA

dt
= kA(t) . (8.1)

Here k is a constant of proportionality. It is important that you understand its
units! To make the equation work out, k must have units of inverse time. The value
k = 0.03years−1 for example, would mean that if you measure time in years, and
the present population is one million, then the instantaneous growth rate would be
30,000 people per year.

The solution to a differential equation such as (8.1) is any function A(t) that makes
the equation true. Typically there will be more than one such equation. For example,
the general solution to A�(t) = 0.03A(t) is Ce0.03t, where C is any real number. We
are going to postpone until Unit 9 the business of to find nice solutions such as this
one. In Unit 8 we will concentrate instead on understanding pretty much everything
else: how to set up a differential equation, what it means, and what the solution will
look like qualitatively.

Verifying that you have found a solution is a lot easier than finding a solution. To
check that Cekt solves (8.1), just evaluate both sides when A(t) = Cekt. The left side
is the derivative of A(t) which is Ckekt. The right side is k times A(t) which is Ckekt.
They match – whoopee!

The reason you might expect there to be many solutions to an equation such as (8.1)
is that it is an equation of evolution. Once you know where you start, everything
else should be deterimined, but there is nothing in the equation that tells you where
you start. A differential equation together with a value at a certain time is called
an initial value problem. For example, A�(t) = 0.03t; A(0) = 1, 000, 000 is an initial
value problem.
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Standard form for first-order differential equations

A differential equation could be abitrarily complicated. The equation

f(x)
3

�

1 +

�
df

dx

�2

− ln f(x+ a) + exp

�
d2f

dx2

�
= arctan(x+ f(x))

is a differential equation but way too complicated for us to have any hope of figuring

out what functions f satisfy it. Note the appearance of a second derivative, the square

of the first derivative, a big messy cube root and the appearance of the unknown

function f as the argument of the arctangent. We will stick to a much simpler class

of differential equations, called first order differential equations in standard
form. This is the form

dy

dx
= F (x, y) . (8.2)

Be sure you understand what this means. The unknown function in this case is the

function y(x). We call y the “dependent variable” and x the “independent variable”.

The function F is an abstraction representing that the right-hand side is some function

of x and y. Here are some examples:

dy

dx
= x−2

dy

dx
= ky

dy

dx
= x− y

dy

dx
=

3
√
y + ex

Even though you don’t yet know much about differential equations, there is a lot you

can say looking at these examples. (i) It is possible that F (x, y) will be a function

of just x, as in the first equation. This means that y(x) is just the integral of this

function. So you can already solve this one: it is y(x) = −1/x+C. (ii) It is possible
that F (x, y) will be a function of just y, as is the case in the second equation. In that

case it’s not so obvious how to solve it, but you actually already know the solution to

this particular equation because it is just (8.1). (iii) In general, a first order equation
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in standard form can be simple, like the third one, or complicated, like the fourth. The

simple ones are usually exactly solvable (the third one will be solved in Unit 9.4) and

the more complicated ones are not. The fourth equation, while not exactly solvable

will still yield plenty of information; this is what Unit 8 is mostly about.

A point of notation: should we use y� or dy/dx? Both mean the same thing, but

dy/dx is clearer because it tells you which is the dependent variable. If you wrote

y� = −cetx it would be unclear whether t or x was the independent variable (or c
could be too, but we never choose c for a variable name because it sounds too much

like it should be a constant). We will use both notations, as both are common in

real life. One more point: when we want to emphsize that the unknown fariable is a

function, we sometimes use a name like f or g instead of y. For example, f � = −xf
is a differential equation (it is understood that the indpendent variable is x). The

most common independent variable names are x and t, with t usually chosen when it

represents time.

Integral equations

Certain equations with integrals in them can be made into differential equations

by differentiating both sides (this uses the Fundamental Theorem of Caculus). For

example the integral equation

f(t) = 12−
� t

5

3f(s) ds

can be differentiated with respect to t to obtain

f �
(t) = −3f(t) .

The integral equation has only one solution but this differential equation has many.

This means that there was initial value data in the integral equation that we forgot

to include in the differential equation. Can you spot it? Really we should have

translated the integral equation into the initial value problem:

f �
(t) = −3f(t) ; f(5) = 12 .
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8.2 Slope fields

Slope field drawings are a way to enable you to sketch solutions to differential equa-

tions. The equation dy/dx = f(x, y) tells you what the slope of the graph of y should

be at any point (x, y), if indeed that point is on the graph. We make a grid of points

and through every (x, y) in the grid we put a little line segment of slope f(x, y). We

then try to sketch solutions that are always tangent to the line segments, following

them as they change direction. Pages 538–539 of the text do a good job explaining

this. PLEASE READ THESE! We will then spend a day practicing.

Slope fields are a qualitative approach to understanding the solution to a differential

equation, meaning that you get information about the nature of the solution even

when you can’t find the exact solutions. Here’s an example.

Why can we tell that the solution to y� = 2− ey should approach a limit of ln 2? It’s

because when y(x) < ln 2 then 2− ey is positive and the function threrefore increases

while when y(x) > ln 2 then 2 − ey is negative and the function therefore decreases.

It seems clear from this that if the function begins below ln 2 it will steadily increase

but at a lesser and lesser rate and never get above ln 2, while if the function begins

above ln 2 then it will steadily decrease but at a lesser and lesser rate and never get

below ln 2. We therefore have a very good idea what this function looks like without

ever solving the equation:
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8.3 Euler iteration

Euler’s method, or “Euler iteration” is a way of finding a numerical approximation
for the solution of an initial value problem at some later time. In other words, for the
equation y� = f(y, t); y(t0) = y0, you can compute an approximation to y(t1) when t1
is any time greater than t0.

The idea behind Euler iteration is that you follow the slope field for a small amount
of time ∆t, which is fixed at some value such as 0.5 or 0.1. Let t1 = t0 +∆t be the
new time and let y1 be the approximation you get by followingthe slope field fo time
∆t. In other words, y1 = y0 + (∆t)f(y0, t0). The slope at the point (t1, y1) will in
general be different. Follow that slope for time ∆t, and repeat.

I don’t have a lot to add to what’s in the textbook on Page 539–541. Euler’s method
is important because it gives you an in-principle understanding of what a solution
should be like, whether or not you can produce an analytic solution. This is important
for your understanding even if you rarely use Euler’s method in practice.

Different notions of solution

Our last order of business in this section is some philosophy. You need to understand
what is meant by a solution to a differential equation. The simplest differential
equation is of the form y� = f(x), in other words, the right-hand side does not
depend on y. You already know how to solve this: y(x) =

�
f(x) dx. But wait, what

if it’s something you can’t integrate? An example of this would be dy/dx = ex
2
. We

could write a solution like y(x) = y(0) +
� x

0 et
2
dt, but is this really a solution? The

answer is yes. Here’s why.

Euler’s method allows you to approximate values of the independent variable. For
example, given y� = f(x, y) and y(0) = 5 we could use Euler’s method to evaluate
y(2). What you need to understand is that yes we can do it but it’s tedious and not
all that accurate unless you use a miniscule step size. By contrast, using Riemann
sums to estimate

� 2

0 et
2
dt is a piece of cake. Keep in mind the relative difference in

difficulty between Riemann sums and Euler’s method as we discuss three levels of
possible solution to a differential equation.
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1. If you can find a solution y = f(x) where f has an explicit formula then that is

obviously the best. Your calculator or computer (or maybe even your phone) can

evaluate this, and typically you have other information associated with f such as

how fast it grows, whether it has asymptotes, and so forth.

2. Next best is if you can write a formula for y that involves functions without nice

names, defined as integrals of other functions. You already realize that many simple

looking functions such as ex
2
and ln(x)/(1+x) have no simple anti-derivative. The

differential equation y� = ex
2
is trivial from a differential equations point of view

(it is in the form y� = f(x) which we discussed above) but still we can do no better

than to write the solution as y =
�
ex

2
dx. This is perfectly acceptable and counts

as solving the equation.

3. Lastly, for the majority of equations, we can’t write a solution even if allowed

to use integrals of functions. In this case the best we can do is to numerically

approximate particular values and to give limiting information or orders of growth

for y. For example, if y� = 2− ey then limx→∞ y(x) = ln 2.

One last thing that Euler iteration does for us is to convince us that an initial value

problem should have a solution. After all, if you look at an equation with functions

and derivatives, there is no reason to believe that there is a function satisfying the

equation. But Euler iteration shows you that there has to be. Just do Euler itera-

tion and make the steps smaller and smaller; in the limit it will produce a function

satisfying the differential equation. This is the basis for a theorem. The theorem is

not officially part of this course but you might be interested to know what it says.

Theorem: Let f(x, y) be a continuous function. Then the initial value

problem y� = f(x, y), y(x0) = y0 has a unique solution, at least for a

small amount of time (after that it might become discontinuous). This

solution can be obtained by taking the limit of what you get from Euler

iteration as the step sizes go to zero.
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