
6 Taylor Polynomials

The textbook covers Taylor polynomials as a part of its treatment of infinite series
(Chapter 10). We are spending only a short time on infinite series (the next unit,
Unit 7) and will therefore learn Taylor polynomials with a more direct, hands-on
approach. Accordingly, the readings in the coursepack will be more central, I will be
providing a bit more in terms of lecture, the pre-homework will be relatively short,
with extra length in the regular homework devoted to problems that would normally
be in the pre-homework.

6.1 Taylor polynomials

Idea of a Taylor polynomial

Polynomials are simpler than most other functions. This leads to the idea of approx-
imating a complicated function by a polynomial. Taylor realized that this is possible
provided there is an “easy” point at which you know how to compute the function
and its derivatives. Given a function f(x) and a value a, we will define for each degree
n a polynomial Pn(x) which is the “best nth degree polynomial approximation to f(x)
near x = a.”

It pays to start very simply. A zero-degree polynomial is a constant. What is the
best constant approximation to f(x) near x = a? Clearly, the constant f(a). What is
the best linear approximation? We already know this, and have given it the notation
L(x). It is the tangent line to the graph of f(x) at x = a and its equation is
L(x) = f(a) + f �(a)(x− a). So now we know that

P0(x) = f(a)

P1(x) = f(a) + f �(a)(x− a)

The figure on the next page shows the graph of a function f along with its zeroth
and first degree Taylor polynomials at x = 2. The zeroth degree polynomial is the
flat line and the first degree Taylor polynomial is the tangent line.
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Just one more idea is needed to bust this wide open, that is to figure out Pn(x) for all
n: the polynomial Pn(x) matches all the derivatives of f at a up to the nth derivative.
Check: P0 matches the zeroth derivative, that is the function value, and P1 matches
the first derivative because both P1 and f have the same first derivative at a, namely
f �(a). The next figure shows P3, P4andP5 at x = 2 for the same function, with P5

shown in long dashes, P4 in shorter dashes and P3 in dots. As n grows, notice how
Pn beceoms a better approximation and stays close to f for longer.
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Taylor’s formula

Using what we just said you can solve for what quadratic term is needed to match the
second derivative. We used to make students go through this derivation but it took
a lot of time and the students did not seem to feel it increased their understanding.
Therefore, we will jump straight to the formula.

The definition uses some possibly unfamiliar notation: f (k) refers to the kth derivative
of the function f . This is better than f �, f ��, etc., because we can use it in a formula
as k varies. f (0 denotes f itself.

Definition of Taylor polynomial: Let a be any real number and let
f be a function that can be differentiated at least n times at the point
a. The Taylor polynomial for f of order n about the point a is the
polynomial Pn(x) defined by

Pn(x) :=
n�

k=0

f (k)(a)

k!
(x− a)k .

Remember to read this sort of thing slowly. Here is roughly the thought process you
should go through when seeing this for the first time.

• It looks as if Pn is a polynomial in the variable x with n+ 1 terms.

• When a = 0 it’s a little simpler:

Pn(x) =
n�

k=0

f (k)(0)

k!
xk .

The coefficients are the derivatives of f at zero divided by successive factorials.

• Hey, what’s zero factorial? Oh, it’s defined to be 1. Who knew?

• The degree of Pn(x) will be n unless the coefficient on the highest power (x−a)n

is zero, in which case the degree will be less.

50



Next you should try a simple example.

Example: f(x) = x, n = 3 and a = 2. The value of f(a) is 2 and the first three

derivatives of f(x) are constants: 1, 0, 0. Therefore

P3(x) = 2 + 1 · (x− 2) +
0

2!
(x− 2)

2
+

0

3!
(x− 2)

3 .

In other words, P3(x) = x. Obviously P4, P5 and so on will also be x. Maybe

this example was too trivial. But it does point out a fact: if f is a polynomial of

degree d then the terms of the Taylor polynomial beyond degree d vanish because the

derivatives of f vanish. In fact, Pn(x) = f(x) for all n ≥ d.

Example: f(x) = ex, n = 3 and a = 0. We list the function and its derivatives out

to the third one.

k f (k)(x) f (k)(a)
f (k)(a)

k!
(x− a)k

0 ex 1 1

1 ex 1 x

2 ex 1
x2

2

3 ex 1
x3

6

Summing the last column we find that P3(x) = 1 + x+ x2/2 + x3/6.

Example: Let f(x) = ln
√
x and expand around a = 1. We’ll do the first two terms

this time.

k f (k)(x) f (k)(a)
f (k)(a)

k!
(x− a)k

0 ln
√
x 0 0

1
1

2x

1

2

1

2
(x− 1)

2
−1

2x2
−1

2
−1

4
(x− 1)

2

Summing the last column we find that P2(x) =
x− 1

2
− (x− 1)2

4
.
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Tricks for computing Taylor polynomials

You can always compute a Taylor polynomial using the formula. But sometimes

the derivatives get messy and you can save time and mistakes by building up from

pieces. Taylor polynomials follow the usual rules for addition, multiplication and

composition. If f and g have Taylor polynonmials P and Q of order n then f + g has

Taylor polynomial P +Q. This is easy to see because the derivative is just the sum

of the derivatives. Furthermore, the order n Taylor polynomial for fg is P ·Q (ignore

terms of order higher than n). This is because the product rule for the derivative of

fg looks exactly like the rule for multiplying polynomials. I won’t present a proof

here but you can feel free to use this fact.

Example: What is the cubic Taylor polynomial for ex sin x? The respective cubic

Taylor polynomials are 1 + x + x2/2 + x3/6 and x − x3/6. Multiplying these and

ignoring terms with a power beyond 3 we get

P3(x) = x

�
1 + x+

x2

2

�
− x3

6
· 1 = x+ x2

+
x3

3
.

Perhaps the most useful manipulation is composition. I will illustrate this by example.

The Taylor polynomial for ex
2
is obtained by plugging in x2 for x in the Taylor

polynomial or series for ex : 1 + (x2) + (x2)2/2! + · · · .

One last trick arises when computing the Taylor series for a function defined as an

integral. Suppose f(x) = ntxbg(t) dt. Then f �(x) = g(x) so if you know g and its

derivatives, you know the derivatives of f . If g has no nice indefinite integral, then

you don’t know the value of f itself, except at one point, namely f(b) = 0. Therefore,

a Taylor series at b is the most common choice for a function defined as
� x

b of another

function.

Example: Suppose f(x) =
� x

1

√
1 + t3 dt. The Taylor series can be computed about

the point a = 1. From f �(x) =
√
1 + x3, f ��(x) = 3x2/(2

√
1 + x3) we get

f(1) = 0, f �
(1) =

√
2, f ��

(1) = 3/(2
√
2)

and therefore P2(x) =
√
2(x− 1) +

3

4
√
2
(x− 1)

2
.
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Using Taylor polynomials to approximate

In the subsequent sections and in my lectures you will see where Taylor polynomials
come from, why they are good approximations to the functions that generate them.
You will also see precise statements about how close they are. For now though, we will
take this on faith and see how to use them. In case this bothers you I will point out
two quick things. (1) The Taylor polynomial of degree 0 is the constant f(a). Surely
this is a reasonable, if trivial, approximation to the function f(x) when x is near a.
(2) The Taylor polynomial of degree 1 is the linearization f(a)+f �(a) ·(x−a). Again,
you should already believe that this is a good approximation to f(x) near x = a, in
fact it is the best possible approximation by a linear function.

Example: What’s a good approximation to e0.06? A Taylor polynomial at a = 0 will
provide a very accurate estimate with only a few terms. The linear approximation
1.06 is already not bad. The quadratic approximation is

1 + 0.06 + (1/2)(0.06)2 = 1 + 0.06 + 0.0018 = 1.0618 .

The true value is 1.0618365... so the quadratic approximation is quite good!

Taylor series are particularly useful in approximating integrals when you can’t do
the integral. Remember the problem of approximating

� 1/2

0 cos(πx2) dx? It was not
se easy to get a good answer with a trapezoidal appoximation. We can do better
approximatng cos by a Taylor polynomial around a = 0. You can directly compute
that the first three derivatives are zero, or you can compute P4 in one easy step like
this: for the function cos x, P2(x) = 1−x2/2; now plug in πx2 for x to get 1−π2x4/2.
This is P4. The nice thing about polynomials is that you can always integrate them.
In this case, � 1/2

0

P4(x) =

�
x− π2

10
x5

�����
1/2

0

.

This comes out to 1/2− π2/320 ≈ 0.46916 which is accurate to within 0.001.
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6.2 Taylor’s theorem with remainder

The central question for today is, how good an approximation to f is Pn? We will
give a rough answer and then a more precise one.

Rough answer: Pn(x) − f(x) ∼ c(x − a)n+1 near x = a. For example, the linear
approximation P1 is off from the actual value by a quadratic quantity c(x− a)2. If x
differs from a by about 0.1 then P1(x) will differ from f(x) by something like 0.01. If
x agrees with a to four decimal places, then P1(x) should agree with f(x) to about
eight places. Similarly, the quadratic approximation P2 differs from f by a multiple
of (x− a)3, and so on.

You can skip the justification of this answer, but I thought I’d include the derivation
for those who want it because it’s just an application of L’Hôpital’s rule. Once you
guess that Pn(x)− f(x) ∼ c(x− a)n, you can verify it by starting with the equation

lim
x→0

f(x)− Pn(x)

(x− a)n+1
,

and repeatedly applying L’Hôpital’s rule until the denominator is not zero at x = a.
Because the derivatives of f and Pn at zero match through order n, it takes at least
n + 1 derivatives to get something nonzero, at which point the denominator has
become the nonzero constant (n+1)!. The limit is therefore f (n+1)(a)/(n+1)!, which
may or may not be zero but is surely finite.

We know the Taylor polynomial is an order (x − a)n+1 approximation but there is
a constant c in the expression which could be huge. What about actual bounds can
we obtain on f(x)− Pn(x)? These are given by Answer # 2, which is called Taylor’s
Theorem with Remainder.

Taylor’s Theorem with Remainder: Let f be a function with n + 1
continuous derivatives on and interval [a, x] or [x, a] and let Pn be the
order n Taylor polynomial for f about the point a. Then

f(x)− Pn(x) =
f (n+1)(u)

(n+ 1)!
(x− a)n+1

for some u between a and x.
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The theorem is telling us that the constant c in the rough answer is equal to

f (n+1)
(u)/(n+1)! for this unknown u. This is at first a little mysterious and difficult

to use, which is why we’ll be doing some practice. The exact value of u will depend

on a, x, n and f and will not be known. However, it will always be between a and

x. This means we can often get bounds. We might know, for example, that f (n+1)
is

always positive on [a, x] and is greatest at a, which would lead to

Pn(x) ≤ x ≤ Pn(x) +
f (n+1)

(a)

(n+ 1)!
(x− a)n+1 .

Example: Let f(x) = e−x
, a = ln 10 and n = 1. How well does P2(x) =

1

10
− 1

10
(x−

ln 10) approximate e−x
for x = ln 10 + 0.2 ≈ 2.502? The remainder R = ex − Pn(x)

will equal f ��
(u)/2! times (0.2)2 for some u between ln 10 and ln 10 + 2. Because

f ��
(u) = e−u

, we know that 0 < f ��
(u) < f ��

(a) = 1/10. Therefore, with x = ln 10+0.2,

1

10
− 0.2

10
< e−x <

1

10
− 0.2

10
+

1

20
(0.2)2 .

Numerically, 0.08 < e−(ln 10+0.2) < 0.082. The actual value is 0.081873 . . ..

Here is another example.

Example: Let f(x) = cos(x), a = 0 and n = 4. Then P4(x) = 1− x2

2
+

x4

24
. This is

also P5 because f (5)
(0) = 0. How close is this to the correct value of cosx at x = π/4?

Because the sixth derivative of cos is − cos, Taylor’s theorem says

cos(π/4)− P4(π/4) = c(π/4)6

where c = − cos u/6! for some u ∈ [0, π/4]. The maximum value of − cos on [0, π/4]
is −

�
1/2 and the minimum value is −1, therefore

− 1

720

�π
4

�6
≤ cos(π/4)− P4(π/4) ≤ − 1

720
√
2

�π
4

�6
.

For bounds one can compute mentally, we can use the fact that π/4 is a little less

than 1 to get

− 1

720
≤ cos(π/4)− P4(π/4) ≤ 0

to see that P4(π/4) overestimates cos(π/4) but not by more than 1/720 which is a

little over 0.001.
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