
1 Functions

If we count AB calculus as a pre-requisite and pre-calculus/trigonometry is a pre-

pre-requisite, then functions and their graphs are a pre-pre-pre-requisite! But... that

doesn’t mean that most of you are sufficiently good at dealing with these. Recognition

of basic types of functions is crucial for being able to handle material at the pace and

level you will need. So is the ability to go back and forth between analytic expressions

for functions and their graphs. So is number sense: knowing approximate values

without stopping for a detailed calculuation.

Because of the preliminary nature of this material, I am not going to write compre-

hensive notes on it. Instead, I will assign some online homework to make sure you

are where you need to be and will refer you to sections of the textbook to brush up.

Here are the key concepts and vocabulary from Section 1.1 of the textbook. Know

these!

• domain

• range

• notation for piecewise defintions

• absolute value function

• greatest integer function

• increasing function

• decreasing function

• even function

• odd function

Suggested reading if any of this is unfamilair: Sections 1.3 and 1.6 of Hughes-Hallett

et al., Calculus, 5th edition.

If too much of this is unfamiliar, you may be in the wrong course!
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1.1 Graphing

Begin by reading Section 1.2 of Thomas, paying particular attention to the following

topics: composition of functions; shifting a graph; scaling a graph; reflecting a graph

and reflectional symmetry. Also please skim Sections 1.3 and 1.4, though we will not

be emphasizing these.

Tips on graphing an unfamiliar function, f

(i) Is the domain all real numbers, or if not, what is it? If the function has a

piecewise definition, try drawing each piece separately.

(ii) Is there an obvious symmetry? If f(−x) = f(x) then f is even and there is

a symmetry about the y-axis. If f(−x) = −f(x) then f is odd and there is

180-degree rotational symmetry about the origin.

(iii) Are there discontinuities, and if so where? Are there asymptotes?

(iv) Try values of the function near the discontinuities to get an idea of the shape –

these are particularly important places.

(v) Try computing some easy points. Often f(0) or f(1) is easy to compute. Trig

functions are easily evaluated at certain multiples of π.

(vi) Where is f positive? Where is f increasing (where is f � > 0)? Where is f
concave upward (f �� > 0), versus downward (f �� < 0)?

(vii) Where are the maxima and minima of f and what are its values there?

(viii) Is f defined everywhere? If not, what is the domain?

(ix) What does f do as x → ∞ or x → −∞?

(x) Is there a function you understand better than f which is close enough to f that

their graphs look similar?

(xi) Is f periodic? Most combinations of trig functions will be periodic.
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1.2 Proportionality, units and applications

Another skill most students need practice with is writing formulas for functions given

by verbal descriptions. For example, knowing that an inch is 2.54 centimeters, if f(x)
is the mass of a bug x centimeters long, what function represents the mass of a bug

x inches long?

(a) 2.54f(x)

(b) f(x)/2.54

(c) f(2.54x)

(d) f(x/2.54)

It helps to think about all such problems in units. Although inches are bigger than

centimeters by a factor of 2.54, numbers giving lengths in inches are less than num-

bers giving lengths in centimeters by exactly this same factor. Writing this in units

prevents you from making a mistake:

x cm× 1 in

2.54 cm
=

x

2.54
in .

This shows that replacing x by x/2.54 converts the measurement, and therefore (d)
is the correct answer. OK, maybe that was too easy for you, but when the problems

get more complicated, it really helps to do this.

Some more helpful facts about units are as follows.

1. You can’t add or subtract quantities unless they have the same units.

2. Multiplying (resp. dividing) quantities multiplies (resp. divides) the units.

3. Taking a power raises theunits to that power. Most functions other than powers

require unitless quantites for their input. For example, in a formula y = e∗∗∗ the

quantity *** must be unitless. The same is true of logarithms and trig functions:

their arguments (inputs) are always unitless.

4. Units tell you how a quantity transforms under scale changes. For example a

square inch is 2, 542 times as big as a square centimeter, and a Netwon (kilogram

meter per second squared) is 105 dynes (gram centimeter per second squared).
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Often what we can easily tell about a function is that it is proportional to some
combination of other quantities, where the constant of proportionality may or
may not be known, or may vary from one version of the problem to another.

Example: if the monetization of a social networking app is proportional to the square
of the number of subscribers (this representing perhaps the amount of messaging
going on) then one might write M = kN2 where M is monetization, N is number of
subscribers and k is the constant of proportionality. You should always give units for
such constants. They can be deduced from the units of everything else. The units
of N are people and the units of M are dollars, so k is in dollars per square person.
You can write it: k $/person2.

Example: The present value under constant discounting is given by V (t) = V0e−αt

where V0 is the initial value and α is the discount rate. What are the units of α?
They have to be inverse time units because αt must be unitless. A typical discount
rate is 2% per year. You could say that as “0.02 inverse years.”

Often quantities are measured as proportions. For example, the proportional increase
in sales is the change is sales divided by sales. In an equation: the proportional
increase in S is ∆S/S. Here, ∆S is the difference between the new and old values of
S. You can subtract because both have the same units (sales), so ∆S has units of
sales as well. That makes the proportional increase unitless. In fact proportions are
always unitless.

Percentage increases are always unitless. In fact they are proportional increases mul-
tiplied by 100. Thus if the proportional increase is 0.0183, the percentage increase
is 18.3%. In this class we aren’t going to be picky about proportion versus percent-
age. If you say the percentage increase is 0.183 or the proportional change is 18.3%,
everyone will know exactly what you mean. But you may as well be precise.

One last thing about units (really should have been point number 5 above) is how
they behave under differentiation and integration. The derivative (d/dx)f has units
of f divided by units of x. You can see this easily on the graph because it’s a limit
of rise over run where rise has units of f and run has units of x. Likewise,

�
f(x) dx

has units of f times units of x. Again you can see it from the picture, because the
integral is an area under a graph where the y-axis has units of f and the x-axis has
units of, well, x.
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Inverse functions

You can read about inverse functions is Section 1.6 of the textbook. The concept

appears to be harder than most people realize. For example, last year I gave a

problem to compute a formula for the inverse function to sinh(x), the hyperbolic sine
function. This was already not easy (only half the students got it) but then I asked

them to find a number u such that sinh(u) = 1. Almost no one got it, despite that

fact that this was supposed to be the easy part! They just needed to plug in 1 to their

inverse sinh function. By definition, sinh
−1
(1) is a number u such that sinh(u) = 1.

The moral of the story is, don’t lose sight of the meaning of an inverse function when

doing computations with them.

The textbook tells you how to compute them and also some things to watch out for:

• When does an inverse function exist?

• What are the domain and range of the inverse function?

When a function is not one to one, you can define an inverse if you restrict the range

of the inverse. There is a standard way this is done with inverse trig functions; please

read it on page 48. Note: the standard inverse trig functions have names (arcsine,

etc.) and notations (sin
−1

and so forth). Note also, that the notation f−1
for the

inverse function to f is TERRIBLE. It is the same as (and therefore confusable with)

the notation of the reciprocal of f . How stupid is that? But it’s widely accepted, so

we’re stuck with it. Another example of a standard choice of inverse function is the

inverse of the squaring function.

Think: how is the squaring funtion not one to one, what is the name of

its standard inverse, and what choice is made to remedy its lack of being

one-to-one?

Lastly, think about the units of an inverse function. If f takes units of x as input

and produces units of y, then to answer the question “f of what is equal to y?” you

need to input a quantity in units of y and answer in units of x. In other words, the

input and output units are switched.
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1.3 Estimating and bounding

Estimating is non-rigorous. We want to understand a quantity f(x) that is hard to
compute, but we can compute a quantity f̃(x) that is near f(x). It’s a little subjective
to say f̃(x) ≈ f(x), if we can’t say precisely what is meant by the symbol ≈, but it is
very useful nonetheless. One of the most common methods of approximation is the
linear approximation via the derivative. This is discussed at length in Section 3.11,
too much length actually. The introduce the term differential which we won’t use.
We will however use the term linearization:

Definition: The linearization of a differentiable function f at the point
a is the function �(x) = f(a) + (x− a)f �(a) (see page 203 of the text). In
pictures �(x) is the function whose graph is a line tangent to the graph of
f at the point (a, f(a)).

How close is �(x) to f(x) when x is close to a? Obviously it depends how close x
is to a. In the middle of the course, when we study Taylor polynomials, we’ll see
that �(x)− f(x) is roughly a constant times (x− a)2. Squaring makes small numbers
even smaller, so when x is within 0.01 of a, then �(x) should be within a few ten-
thousandths of f(a). We can’t get more precise than this at present, but it’s good to
keep in mind.

y=f(x)

f(a)

a

y=L(x)
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Bounding

Bounding is rigorous. To get an upper bound on f(x) means to find a quantity U(x)
that you understand better than f(x) for which you can prove that U(x) ≥ f(x). A
lower bound is a quantity L(x) that you understand better than f(x) and that you

can prove to satisfy L(x) ≤ f(x). If you have both a lower and upper bound, then

f(x) is stuck for certain in the interval [L(x), U(x)]. It should be obvious that an

upper bound is better the smaller it is. Similarly, a lower bound is better the larger

it is.

In a way, though, bounding is harder than estimating because there is no one correct

bound (well there’s no one correct estimate either, but we usually a particular estimate

we’re told to use, such as a linear estimate). Two ways we typically find bounds are

as follows.

First, if f is monotone increasing then an easy upper bound for f(x) is f(u) for any
u ≥ x for which we can compute f(u). Similarly an easy lower bound is f(v) for any
v ≤ x for which we can compute f(v). If f is monotone decreasing, you can swap the

roles of u and v in finding upper and lower bounds. There are even stupider useful

bounds, such as f(x) ≤ C if f is a function that never gets above C.

Example: Suppose f(x) = sin(1). The easiest upper and lower bounds are 1 and −1

respectively because sin never goes aboe 1 or below −1. A better lower bound is 0

because sin(x) remains positive until x = π/2 and obviously 1 < π/2. You might in

fact recall that one radian is just a bit under 60◦, meaning that sin(60◦) =
√
3/2 ≈

0.0866 . . . is an upper bound for sin(1). Computing more carefully, we find that a

radian is also less than 58◦. Is sin(58◦) a better upper bound? Probably not because

we don’t know how to calculate it, so it’s not a quantity we understand better. Of

course is we had an old-fashioned table of sines, and all we can remember about one

radian is that it is between 57◦ and 58◦, then sin(58◦) is not only an upper bound

but the best one we have.

Concavity

A more subtle bound come when f is know to be concave upward or downward in

some region. By definition, a concave upward function lies below its chords and a

concave downward function lies above its chords.

9



Concavity upward (resp. downward) is easy to test: a function f is concave upward

wherever f �� > 0 and concave downward wherever f �� < 0. If one of these holds over

an interval [a, b] then for x in the interval [a, b] you can tell whether f(x) is greater
or less than the chord approximation

C(x) = f(a) +
x− a

b− a
(f(b)− f(a)) .

a

y=f(x)

f(a)

b

f(b)

y=C(x)
y=L(x)

c

In the figure, the function f(x) is concave down. as long as x is in the interval [a, b],
we are guaranteed to have C(x) ≤ f(x). On the other hand, when f �� < 0 on an

interval, the function always lies below the tangent line. Therefore L(x) is an upper

bound for f(x) when x ∈ [a, b] no matter which point c ∈ [a, b] at which we choose

to take the linear approximation.

Example: The function tanx is concave upward on [0, π/2). That means that the

tangent line to tan x anywhere in that interval will be a lower bound for tan x on

the interval. The easiest place to compute the slope of tan x is at x = 0, where

thederivative is sec2(0) = 1. The tangent line at (0, 0) is therefore y = x. This gives
the lower bound tan x ≥ x. This is in fact VERY close when x is near zero because

tan has a point of inflection there (the tangent line pases through the curve, which is

particularly flat).
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1.4 Limits

You might not think limits would show up in a calculus course oriented toward ap-
plication. Wrong! There are a lot of reasons why you need to understand the basic
of limits. You should know these reasons, so here they are.

1. The definition of derivative (instantaneous rate of change) is a limit.‘

2. The exponential function is defined by a limit.

3. Continuous compounding is a limit.

4. Limits are needed to understand improper integrals, such as the integrals of prob-
ability densities.

5. Infinite series, which we will discuss briefly, require limits.

6. Discussing how a function behaves “in the long run” is really about limits.

I would like you to understand limits in four ways:

Intuitive
Pictorial
Formal
Computational

The book does a pretty good job on these, but most students do not learn limits all
that well from a book so I am going to repeat some of that in these notes and in class.
But please do read Section 2.2, 2.3 and 2.4.

Intuitive: The limit as x → a of f(x) is the value (if any) that f(x) gets close to
when x gets close to (but does not equal) a. This is denoted limx→a f(x). If we
only let x approach a from one side, say from the right, we get the one-sided limit
limx→a+ f(x).

Please observe the syntax: If I tell you a function f and a value a then the expression
limx→a f(x) takes on a value (perhaps “undefined” but nonetheless a value). The
variable x is a bound or “dummy” variable; it does not have a value in the expression
and does not appear in the answer; it stands for a continuum of possible values
approaching a.
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Pictorial: if the graph of f appears to zero in on a point (a, b) as the x-coordinate
gets closer to a, then that is the limit (even if the actual point (a, b) is not on the

graph). Look at Example 2 on page 67 to see what I mean about (a, b) not needing to

be on the graph. We can take limits at infinity as well as at a finite number. The limit

as x → ∞ is particularly easy visually: if f(x) gets close to a number C as x → ∞
then f will have a horizontal asymptote at height C (if you allow the function to

possibly cross the line and double back, and still call it an asymptote). Thus 3 +
1

x
,

3e−x
and 3 +

sin x

x
all have limit 3 as x → ∞.

Formal: The precise definition of a limit is found in Section 2.3. An informal poll of

last semester’s students showed that zero out of 45 remembered covering this in their

previous course (despite the fact it was on most syllabi). The good news is, we don’t

have to spend a lot of time on it. However, you should see it at least once, enough

that you grasp it.

The formal definition makes the intuitive definition precise. The intuitive definition

is that limx→a f(x) = L if f(x) gets close to L when x gets close to a. The formal

definition formalizes “gets close to” and “when”. The formal definition is

limx→a f(x) = L if for any small tolerance ε in the y value there is a

corresponding small tolerance δ in the x value such that trapping the x
value in the interval [a− δ, a+ δ] (but x is not allowed to equal a) forces
the y value to be trapped in the interval [L− ε, L+ ε]. In symbols:

0 < |x− a| < δ =⇒ |f(x)− L| < ε .
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Limits at infinity. The formal definition of limit is a little different when the limit is
taken at infinity. We say limx→∞ f(x) = L if you can trap the y value within ε of L
by trapping the x value above some number M . In symbols, for evey ε > 0 there has
to be an M such that

x > M =⇒ |f(x)− L| < ε .

Similarly, limx→−∞ f(x) = L if for any ε you can trap y in [L− ε, L+ ε] by trapping
x below some value −M :

x < −M =⇒ |f(x)− L| < ε .

Limits of infinity. I hope you’ve noticed that the statement that f(x) has a limit as
x → a is really the statement that limx→a f(x) = L for some real number L. The
other possibility is that the limit does not exist, for which you are free to use the
abbreviation DNE. This can happen because the value becomes infinite or because
it has a jump, or because it is too wiggly and never settles down. Under certain
conditions we say the limit is +∞. NOTE: THIS IS LINGUISTAICALLY VERY
MISLEADING. It is a special case of DNE. Thus we can say simultaneoulsy that the
limit is +∞ and that the limit DNE.

To be precise, we say that limx→a f(x) = +∞ if for any M we can trap the y
value above M by trapping the x value near enough (but not equal to) a. Formally,
limx→a f(x) = ∞ if for every M there is a δ > 0 such that

0 < |x− a| < δ ⇒ f(x) > M .

You can have a limit at ±∞ of ±∞. For example limx→∞ f(x) = −∞ when for every
M there is a constant B (I used B because we already used M) such that whenever
x > B we have f(x) < M .

One-sided limits. I hope you read what’s in the book about one-sided limits. We
say limx→a+ f(x) = L if you can trap f(x) in any chosen interval [L − ε, L + ε] by
trapping x in an interval (a, a + δ) for suitably chosen δ. The intuition is that f(x)
gets near L when x gets near a approching from the right (on the number line) which
is also called approaching from above (from higher numbers). Note again that you
don’t need to look at the value of f at a itself or at any point to the left of a. In fact
the function doesn’t have to be defined at these places, just on an interval (a, b) for
some b > a.
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Computational: There are five theorems in Section 2.2 and you should know them

all. I hope they seem intuitive to you but they may not. They are not too difficult

however. Next, skip ahead to Section 4.5, page 256, and read L’Hôpital’s rule. Ac-

tually you need to read the whole section: the next page tells you how to iterate

L’Hôpital’s rule and the page after that tells you how to deal with indeterminate

forms other than 0/0. L’Hôpital’s rule is useful and it is also pretty easy to use.

The one thing you need to be careful of is trying to apply it when you don’t have

an indeterminate form to begin with. I put a bunch of questions on this in the pre-

homework, which you can try once you’ve reviewed Section 4.5 of the text. Finally,

here are two tricks that come in handy.

(i) When trying to evaluate the difference between two square roots that appear close

to each other, try multiplying and dividing by their sum, for example, to evaluate

√
x+ 1−

√
x

(
√
x+ 1 +

√
x)√

x+ 1 +
√
x

=
1√

x+ 1 +
√
x

which is quite clearly a little less than 1/(2
√
x).

(ii) When evaluating a limit with a power in it, try taking logs. If you can find the

limit of the log, then exponentiate to get the limit of the original expression.

Examples:

(i) lim
x→∞

x2
+ 3x

2x2 − 1
=

1

2
because we can divide by the highest power of x and obtain

lim
x→∞

1 + 3/x

2− 1/x2
. The limit of the ratio is the ratio of the limits when the individ-

ual limits exist, which the do in this case: the numerator has limit 1 and the

denominator has limit 2.

(ii) lim
x→3

x− 3

x2 − 9
=

1

6
because you can factor x− 3 out of the numerator and denom-

inator. You obtain
1

x+ 3
whenever x �= 3, which has the value

1

6
at x = 3.

(iii) To find limx→0(1+2x)1/(3x) we first find the limit of the natural log: limx→0 ln[(1+

2x)1/(3x)] = limx→0 ln(1 + 2x)/(3x) = limx→0
2/(1+2x)

3 by L’Hôpital’s rule. This

evaluates to 2/3 at x = 0. The origin limit is therefore e2/3.
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Last remarks on limits:

Continuity: A function f is continuous at a point a if it has a (honest, two-sided)
limit at a and this limit is equal to the function value at a (in other words, now we do
require the point (a, f(a)) to be on the graph along with the other nearby values of
f . Continuity is important later because it comes up in the hypotheses of theorems.
You should read Section 2.5 and decide whether there is anything in there that is not
intuitively obvious.

Limit of a sequence: The limit of a sequence a1, a2, a3, . . . is nearly the same
definition as limx→∞ f(x) except that instead of a function f defined for every real
value we have a term an that is defined only for integer values of n. Nevertheless, we
say limn→∞ an = L if and only if the terms of the sequence become arbitrarily close
to L as n gets bigger.
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