Name \qquad

1. The base of a solid S is the region in the first quadrant bounded by the curve $y=1-x^{2}$. The cross-sections perpendicular to the x-axis are squares. Compute the volume of the solid S.
(A) $\frac{1}{2}$
(D) $\frac{5}{9}$
(B) $\frac{3}{5}$
(E) $\frac{7}{12}$
(C) $\frac{4}{7}$
(F) $\frac{8}{15}$
2. Consider the region D bounded by $y=x^{2}$ and $y=x+2$. Compute the volume of solid obtained by revolving D about the x-axis.
(A) 5π
(D) 24π
(B) $\frac{30}{7} \pi$
(E) 14π
(C) $\frac{72}{5} \pi$
(F) $\frac{36}{9} \pi$
3. Find the length of the curve

$$
y=\frac{e^{2 x}}{2}+\frac{e^{-2 x}}{8}, \quad 0 \leqslant x \leqslant 2
$$

(A) $\frac{1}{8}\left(e^{4}+e^{-4}\right)$
(D) $\frac{13}{12}$
(B) 1
(E) $4 e^{4}-\frac{1}{4} e^{-4}$
(C) $\frac{1}{8}\left(4 e^{4}-e^{-4}-3\right)$
(F) $\frac{15}{8}$
4. Solve the initial value problem

$$
x \frac{d y}{d x}=y+x^{3} e^{x}, \quad y(1)=0
$$

and find $y(3)$.
(A) 1
(D) $3 e^{3}$
(B) 3
(E) $6 e^{3}$
(C) e^{3}
(F) $3 e^{3}+2 e^{-3}$
5. A tank initially contains 200 gallons of brine in which 50 lb of salt are dissolved. A brine containing $1 \mathrm{lb} / \mathrm{gal}$ of salt runs into the tank at the rate of 20 gallons per minute. During the process, the tank is kept well-mixed and the resulting salt water flows out of the tank at the rate of 20 gallons per minute. Find the amount of salt in the tank $\left(10 \ln \frac{3}{2}\right)$ minutes after the process starts.
(A) 100
(D) $10 \ln 10$
(B) 120
(E) $20 \ln 3$
(C) 140
(F) $30 \ln 2$
6. $\int_{0}^{\pi / 2} \cos ^{3} x \sin ^{2} x d x=$
(A) $\frac{2}{15}$
(D) $\frac{1}{3}$
(B) $\frac{1}{5}$
(E) $\frac{2}{5}$
(C) $\frac{4}{15}$
(F) $\frac{8}{15}$
7. $\int_{0}^{\infty} x e^{-2 x} d x=$
(A) 2
(D) $1 / 4$
(B) 1
(E) 0
(C) $1 / 2$
(F) The integral diverges.
8. $\int_{0}^{1} \frac{2(x-1)}{(x+1)(x-3)} d x=$
(A) $4 \ln 2-2 \ln 3$
(D) $2 \ln 3+\ln 2$
(B) $2 \ln 3-2 \ln 2$
(E) $3 \ln 3-\ln 2$
(C) $2 \ln 2-\ln 3$
(F) $3 \ln 2-\ln 3$
9. $\int_{0}^{4} \sqrt{4+x^{2}} d x=$
(A) $4 \sqrt{5}-2 \ln (\sqrt{5}-2)$
(D) $4 \sqrt{5}+2 \ln (\sqrt{5}+2)$
(B) $4 \sqrt{5}+2 \ln (\sqrt{5}-2)$
(E) $2 \sqrt{5}+\ln (\sqrt{5}-2)$
(C) $4 \sqrt{5}-2 \ln (\sqrt{5}+2)$
(F) $2 \sqrt{5}-\ln (\sqrt{5}+2)$
10. The function

$$
f(x)=\left\{\begin{array}{cl}
\ln x & 1 \leqslant x \leqslant e \\
0 & \text { otherwise }
\end{array}\right.
$$

is a probability distribution (on the interval $[1, e]$). What is the mean of this distribution?
(A) $\frac{1}{2}\left(e^{2}+1\right)$
(D) $\frac{1}{4}\left(e^{2}-1\right)$
(B) $\frac{1}{4}\left(e^{2}+1\right)$
(E) $\frac{1}{2}(e+1)$
(C) $\frac{1}{2}\left(e^{2}-1\right)$
(F) $\frac{1}{4}(e+1)$
11. Find the sum $A+B+C$, where

$$
A=\lim _{n \rightarrow+\infty} \arctan \left(\ln \left(n^{2}+1\right)\right), \quad B=\lim _{n \rightarrow+\infty} e^{e^{-n^{2}}}, \quad C=\lim _{n \rightarrow+\infty} \frac{1}{1+\frac{1}{1+\frac{1}{n}}}
$$

(A) $\frac{\pi}{2}$
(D) 0
(B) $\frac{3+\pi}{2}$
(E) 1
(C) $\frac{3}{2}$
(F) $\frac{1}{2}$
12. Consider the following infinite series:

$$
A=\sum_{n=1}^{\infty} \frac{n \ln n}{n^{3}+1}, \quad B=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt[3]{n}}, \quad C=\sum_{n=1}^{\infty} \frac{n^{4}}{2 n!}
$$

(A) A diverges, B and C converge
(D) A, B, and C diverge
(B) B diverges, A and C converge
(E) A, B, and C converge
(C) C diverges, A and B converge
(F) None of the above
13. It is estimated that humans released 40 billion tons of CO_{2} into the environment last year. Suppose that hummankind will be capable of reducing by 10% its CO_{2} emissions each year from now on. After a very long time, about how much CO_{2} will humans have released to the environment since (and including) last year's 40 billion tons?
(A) 100 billion tons of CO_{2}
(D) 400 billion tons of CO_{2}
(B) 200 billion tons of CO_{2}
(E) 500 billion tons of CO_{2}
(C) 300 billion tons of CO_{2}
(F) None of the above
14. Find the (largest) interval of convergence for the power series

$$
\sum_{n=1}^{\infty} \frac{(x+3)^{n}}{2^{n} n^{1 / 2}}
$$

(A) $[-5,-1]$
(D) $[1,5]$
(B) $[-5,-1)$
(E) $[1,5)$
(C) $(-5,-1)$
(F) $(1,5)$
15. Let $F(x)$ be the unique function that satisfies $F(0)=0$ and $F^{\prime}(x)=x^{3} \cos (2 x)$ for all x. Find the Taylor Series of $F(x)$ centered at $x_{0}=0$.
(A) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n} x^{2 n+4}}{(2 n+4)(2 n)!}$
(D) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n} x^{2 n+3}}{(2 n)!}$
(B) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} x^{2 n+2}}{(2 n+4)(2 n)!}$
(E) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} x^{2 n}}{(2 n+1)!}$
(C) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n} x^{2 n+4}}{(2 n)!}$
(F) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n}(2 n+4) x^{2 n+3}}{(2 n)!}$

