Name

1. The base of a solid S is the region in the first quadrant bounded by the curve $y=1-x^2$. The cross-sections perpendicular to the x-axis are squares. Compute the volume of the solid S.

(A) $\frac{1}{2}$

(D) $\frac{5}{9}$

(B) $\frac{3}{5}$

(E) $\frac{7}{12}$

(C) $\frac{4}{7}$

(F) $\frac{8}{15}$

2. Consider the region D bounded by $y=x^2$ and y=x+2. Compute the volume of solid obtained by revolving D about the x-axis.

(A) 5π

(D) 24π

(B) $\frac{30}{7}\pi$

(E) 14π

(C) $\frac{72}{5}\pi$

(F) $\frac{36}{9}\pi$

3. Find the length of the curve

$$y = \frac{e^{2x}}{2} + \frac{e^{-2x}}{8}, \qquad 0 \le x \le 2$$

(A) $\frac{1}{8}(e^4 + e^{-4})$

(D) $\frac{13}{12}$

(B) 1

(E) $4e^4 - \frac{1}{4}e^{-4}$

(C) $\frac{1}{8}(4e^4 - e^{-4} - 3)$

(F) $\frac{15}{8}$

4. Solve the initial value problem

$$x\frac{dy}{dx} = y + x^3 e^x, \qquad y(1) = 0$$

and find y(3).

(A) 1

(D) $3e^3$

(B) 3

(E) $6e^3$

(C) e^{3}

(F) $3e^3 + 2e^{-3}$

5. A tank initially contains 200 gallons of brine in which 50 lb of salt are dissolved. A brine containing 1 lb/gal of salt runs into the tank at the rate of 20 gallons per minute. During the process, the tank is kept well-mixed and the resulting salt water flows out of the tank at the rate of 20 gallons per minute. Find the amount of salt in the tank $\left(10\ln\frac{3}{2}\right)$ minutes after the process starts.

(A) 100

(D) $10 \ln 10$

(B) 120

(E) $20 \ln 3$

(C) 140

(F) $30 \ln 2$

6. $\int_{0}^{\pi/2} \cos^3 x \, \sin^2 x \, dx =$

(A) $\frac{2}{15}$

(B) $\frac{1}{5}$

(D) $\frac{1}{3}$ (E) $\frac{2}{5}$

(C) $\frac{4}{15}$

7. $\int_{0}^{\infty} xe^{-2x} dx =$

(A) 2

(D) 1/4

(B) 1

(E) 0

(C) 1/2

(F) The integral diverges.

8. $\int_0^1 \frac{2(x-1)}{(x+1)(x-3)} dx =$

(A) $4 \ln 2 - 2 \ln 3$

(D) $2 \ln 3 + \ln 2$

(B) $2 \ln 3 - 2 \ln 2$

(E) $3 \ln 3 - \ln 2$

(C) $2 \ln 2 - \ln 3$

(F) $3 \ln 2 - \ln 3$

9.
$$\int_0^4 \sqrt{4+x^2} \, dx =$$

(A)
$$4\sqrt{5} - 2\ln(\sqrt{5} - 2)$$

(D)
$$4\sqrt{5} + 2\ln(\sqrt{5} + 2)$$

(B)
$$4\sqrt{5} + 2\ln(\sqrt{5} - 2)$$

(E)
$$2\sqrt{5} + \ln(\sqrt{5} - 2)$$

(C)
$$4\sqrt{5} - 2\ln(\sqrt{5} + 2)$$

(F)
$$2\sqrt{5} - \ln(\sqrt{5} + 2)$$

10. The function

$$f(x) = \begin{cases} \ln x & 1 \leqslant x \leqslant e \\ 0 & \text{otherwise} \end{cases}$$

is a probability distribution (on the interval [1,e]). What is the mean of this distribution?

(A)
$$\frac{1}{2}(e^2+1)$$

(D)
$$\frac{1}{4}(e^2-1)$$

(B)
$$\frac{1}{4}(e^2+1)$$

(E)
$$\frac{1}{2}(e+1)$$

(C)
$$\frac{1}{2}(e^2-1)$$

(F)
$$\frac{1}{4}(e+1)$$

11. Find the sum A + B + C, where

$$A = \lim_{n \to +\infty} \arctan\left(\ln\left(n^2 + 1\right)\right), \quad B = \lim_{n \to +\infty} e^{e^{-n^2}}, \quad C = \lim_{n \to +\infty} \frac{1}{1 + \frac{1}{1 + \frac{1}{n}}}$$

(A)
$$\frac{\pi}{2}$$

(B)
$$\frac{3+\pi}{2}$$

(C)
$$\frac{3}{2}$$

(F)
$$\frac{1}{2}$$

12. Consider the following infinite series:

$$A = \sum_{n=1}^{\infty} \frac{n \ln n}{n^3 + 1}, \quad B = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}}, \quad C = \sum_{n=1}^{\infty} \frac{n^4}{2n!}$$

- (A) A diverges, B and C converge
- (D) A, B, and C diverge
- (B) B diverges, A and C converge
- (E) A, B, and C converge
- (C) C diverges, A and B converge
- (F) None of the above

13. It is estimated that humans released 40 billion tons of CO_2 into the environment last year. Suppose that humankind will be capable of reducing by 10% its CO_2 emissions each year from now on. After a very long time, about how much CO_2 will humans have released to the environment since (and including) last year's 40 billion tons?

- (A) 100 billion tons of CO_2
- (D) 400 billion tons of CO_2
- (B) 200 billion tons of CO_2
- (E) 500 billion tons of CO_2
- (C) 300 billion tons of CO_2
- (F) None of the above

14. Find the (largest) interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{2^n \, n^{1/2}}$$

(A) [-5, -1]

(D) [1, 5]

(B) [-5, -1)

(E) [1,5)

(C) (-5, -1)

(F) (1,5)

15. Let F(x) be the unique function that satisfies F(0) = 0 and $F'(x) = x^3 \cos(2x)$ for all x. Find the Taylor Series of F(x) centered at $x_0 = 0$.

- (A) $\sum_{n=0}^{\infty} \frac{(-1)^n 4^n x^{2n+4}}{(2n+4)(2n)!}$
- (D) $\sum_{n=0}^{\infty} \frac{(-1)^n 4^n x^{2n+3}}{(2n)!}$
- (B) $\sum_{n=0}^{\infty} \frac{(-1)^n 2^n x^{2n+2}}{(2n+4)(2n)!}$
- (E) $\sum_{n=0}^{\infty} \frac{(-1)^n 2^n x^{2n}}{(2n+1)!}$
- (C) $\sum_{n=0}^{\infty} \frac{(-1)^n 4^n x^{2n+4}}{(2n)!}$
- (F) $\sum_{n=0}^{\infty} \frac{(-1)^n 4^n (2n+4) x^{2n+3}}{(2n)!}$

I think the answers are FCCEA/ADCAB/BEDBA