Homework Set 9

DUE: APR 11 - 13, 2018 (AT THE BEGINNING OF RECITATION)

- 1. Find the Taylor Series of the following functions f(x) centered at x_0 :
 - (a) $f(x) = x^4 2x^3 + x 2$ at $x_0 = 0$
 - (b) $f(x) = x^4 2x^3 + x 2$ at $x_0 = 1$
 - (c) $f(x) = \cos(3x^2)$ at $x_0 = 0$
 - (d) $f(x) = \frac{1}{2}\ln(2x+1)$ at $x_0 = 0$
- 2. Use differentiation term-by-term to find the Taylor Series of f'(x) centered at x_0 for each of the items in the previous exercise.
- 3. Compute the sum of the following series by recognizing it as the Taylor Series of an appropriate function:

(a)
$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

(b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{2^n (2n+1)!}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^n 3^{2n} \pi^{2n}}{(2n)!}$

4. The goal of this exercise is to derive the so-called *Leibniz formula* for π , namely

$$\pi = 4\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)} = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \frac{4}{11} + \dots$$

- (a) Write the Maclaurin Series¹ of the function $f(x) = \frac{1}{1+x^2}$
- (b) Use integration term-by-term to find the Maclaurin Series of $F(x) = \arctan x$
- (c) Evaluate F(1) using the series obtained in (b) to prove the Leibniz formula for π

¹Recall the Maclaurin Series of f(x) is simply the Taylor Series of f(x) centered at $x_0 = 0$.