Homework Set 9

Due: Apr 11-13, 2018 (at the beginning of recitation)

1. Find the Taylor Series of the following functions $f(x)$ centered at x_{0} :
(a) $f(x)=x^{4}-2 x^{3}+x-2$ at $x_{0}=0$
(b) $f(x)=x^{4}-2 x^{3}+x-2$ at $x_{0}=1$
(c) $f(x)=\cos \left(3 x^{2}\right)$ at $x_{0}=0$
(d) $f(x)=\frac{1}{2} \ln (2 x+1)$ at $x_{0}=0$
2. Use differentiation term-by-term to find the Taylor Series of $f^{\prime}(x)$ centered at x_{0} for each of the items in the previous exercise.
3. Compute the sum of the following series by recognizing it as the Taylor Series of an appropriate function:
(a) $\sum_{n=0}^{\infty} \frac{1}{n!}$
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{2^{n}(2 n+1)!}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n} \pi^{2 n}}{(2 n)!}$
4. The goal of this exercise is to derive the so-called Leibniz formula for π, namely

$$
\pi=4 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)}=4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{9}-\frac{4}{11}+\ldots
$$

(a) Write the Maclaurin Series ${ }^{1}$ of the function $f(x)=\frac{1}{1+x^{2}}$
(b) Use integration term-by-term to find the Maclaurin Series of $F(x)=\arctan x$
(c) Evaluate $F(1)$ using the series obtained in (b) to prove the Leibniz formula for π

[^0]
[^0]: ${ }^{1}$ Recall the Maclaurin Series of $f(x)$ is simply the Taylor Series of $f(x)$ centered at $x_{0}=0$.

