Homework Set 5

Due: Feb 28 - Mar 2, 2018 (at the beginning of recitation)

- 1. Estimate the area under the graph of $f(x) = \frac{\sin^2 x}{x^2}$ over $0 \le x \le \pi$ using:
 - (a) Trapezoidal rule with four sub-intervals;
 - (b) Simpson's rule with four sub-intervals.
- 2. Find the area of the region enclosed by the graphs of $y = \frac{1}{x+2}$ and $y = \frac{1}{x+8}$ on the interval $[0, \infty)$.
- 3. Compute the following integrals if they converge, or justify why they diverge:

(a)
$$\int_{1}^{\infty} x^{-3} e^{4x} dx$$

(b)
$$\int_{1}^{\infty} x e^{-4x} dx$$

(c)
$$\int_0^2 \frac{\mathrm{d}x}{(4x-1)^{1/3}}$$

$$(d) \int_0^\infty \frac{4x+3}{x^2+2} \, \mathrm{d}x$$

(e)
$$\int_0^2 \frac{2x \, dx}{(x+1)(x^2+1)}$$

$$\text{(f)} \int_4^\infty \frac{\mathrm{d}x}{x^2 - 6x + 10}$$

(g)
$$\int_0^{\pi/2} \tan \theta \, \mathrm{d}\theta$$