Math 104, Fall 2017

Practice Problems for Midterm 2

1. Use the Trapezoidal Rule and Simpson's rule to approximate:
(a) $\int_{1}^{5} \frac{1}{x^{2}} \mathrm{~d} x$, using 4 subintervals
(b) $\int_{0}^{4} x^{3} \mathrm{~d} x$, using 4 subintervals
2. Compute the following improper integrals:
(a) $\int_{0}^{1} \frac{\mathrm{~d} x}{x^{2}}$
(b) $\int_{1}^{\infty} \frac{\mathrm{d} x}{x^{2}}$
(c) $\int_{0}^{\infty} \frac{\mathrm{d} x}{x^{2}}$
(d) $\int_{1}^{\infty} \frac{\mathrm{d} x}{\sqrt{x}}$
(e) $\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{x}}$
3. Decide if the following integrals converge or diverge. If they converge, you do not need to compute their value.
(a) $\int_{1}^{\infty} \frac{\sin ^{2} x}{x^{2}} \mathrm{~d} x$
(b) $\int_{2}^{\infty} \frac{\mathrm{d} x}{\sqrt{x^{2}-1}}$
(c) $\int_{2}^{\infty} \frac{\mathrm{d} x}{\sqrt{x^{4}-1}}$
(d) $\int_{1}^{\infty} \frac{e^{x}}{x} \mathrm{~d} x$
(e) $\int_{1}^{\infty} \frac{1-e^{-x}}{x} \mathrm{~d} x$
4. Consider the function $f(x)= \begin{cases}0, & x<0 \\ C x^{2} e^{-4 x}, & x \geq 0 .\end{cases}$
(a) What value of C makes the function $f(x)$ a probability density?
(b) What is the mean of this probability distribution?
5. Decide if the sequence $\left\{a_{n}\right\}$ converges or diverges. If it converges, find its limit.
a) $a_{n}=\frac{n+1}{n^{3}}$
b) $a_{n}=3^{n}$
c) $a_{n}=\frac{n^{3}}{3^{n}}$
d) $a_{n}=3^{1 / n}$
e) $a_{n}=\left(\frac{1}{3}\right)^{n}$
f) $a_{n}=\left(\frac{1}{3}\right)^{1 / n}$
g) $a_{n}=\sqrt[n]{3 n}$
h) $a_{n}=\sqrt[3 n]{n}$
6. Compute $\lim _{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{b n}$, where a and b are any nonzero real numbers.
7. Compute $\lim _{n \rightarrow \infty} \sqrt[n]{n!}$ or justify (with inequalities) if it diverges.
8. Compute $\lim _{n \rightarrow \infty} \frac{n!}{2^{n}}$ or justify (with inequalities) if it diverges.
9. Given any $a>0$, compute $\lim _{n \rightarrow \infty} \frac{n!}{a^{n}}$ or justify (with inequalities) if it diverges.
10. Decide if the following series converge or diverge. If they converge, find their limit.
(a) $\sum_{n=1}^{\infty} \frac{1}{4^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{7}{2^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{6^{n}}{n^{2}+4}$
(d) $\sum_{n=1}^{\infty} \tan (n)-\tan (n+1)$
(e) $\sum_{n=1}^{\infty} \arccos \left(\frac{1}{n+1}\right)-\arccos \left(\frac{1}{n+2}\right)$
11. Use a convergence test to determine if the following series converge or not:
(a) $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{4}+1}$
(b) $\sum_{n=1}^{\infty} \frac{n^{5}}{n^{6}+2 n^{3}+1}$
(c) $\sum_{n=2}^{\infty} \frac{3^{n+2}}{\ln n}$
(d) $\sum_{n=1}^{\infty}\left(\frac{4 n+1}{2 n-5}\right)^{n}$
(e) $\sum_{n=1}^{\infty} \frac{4^{n}}{(3 n)^{n}}$
(f) $\sum_{n=1}^{\infty} \frac{n+2}{4^{n}}$
12. A dosage of 100 mg of a certain drug is given to a patient at 8:00am each day. Suppose 10% of the drug remains in the body after one full day period (8:00am next day).
a) What is the amount of drug in the body three days after the treatment started before the next dose is given at 8:00am?
b) Use a geometric series to estimate the amount of drug in the body after a very long time before a new dose is given.
13. Suppose that a basketball rebounds $2 / 3$ of its previous height after each bounce. If you drop this basketball from a height of 3 m , how far does it travel up and down until it stops moving?
