Homework Set 7

DUE: NOV 13 - 15, 2017 (AT THE BEGINNING OF RECITATION)

1. Find the interval of convergence for each of the power series below. Do not forget to check the endpoints!

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{2n}$$

(b) $\sum_{n=0}^{\infty} \frac{(-1)^n n^2 x^n}{2^n}$
(c) $\sum_{n=0}^{\infty} \frac{2^n (x+3)^n}{\sqrt{n}}$
(d) $\sum_{n=0}^{\infty} \frac{n! (x-7)^n}{2^n}$

- 2. Find the Taylor Series of the following functions f(x) centered at x_0 :
 - (a) $f(x) = x^3 x^2 + x 1$ at $x_0 = 0$ (b) $f(x) = x^3 - x^2 + x - 1$ at $x_0 = 1$ (c) $f(x) = \cos(2x^2)$ at $x_0 = 0$ (d) $f(x) = \ln(3x + 1)$ at $x_0 = 0$
- 3. Use differentiation term-by-term to find the Taylor Series of f'(x) centered at x_0 for each of the items in the previous exercise.
- 4. The goal of this exercise is to derive the so-called *Leibniz formula* for π , namely

$$\pi = 4\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)} = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \frac{4}{11} + \dots$$

- (a) Write the Maclaurin Series¹ of the function $f(x) = \frac{1}{1+x^2}$
- (b) Use integration term-by-term to find the Maclaurin Series of $F(x) = \arctan x$
- (c) Evaluate F(1) using the series obtained in (b) to prove the Leibniz formula for π

¹Recall the Maclaurin Series of f(x) is simply the Taylor Series of f(x) centered at $x_0 = 0$.