## Homework Set 5

Due: Oct 23-25, 2017 (at the beginning of recitation)

1. Consider the function $f(x)=\left\{\begin{array}{ll}0, & x<0 \\ C x^{3} e^{-x}, & x \geq 0 .\end{array}\right.$.
(a) What value of $C$ makes the function $f(x)$ a probability density?
(b) What is the mean of this probability distribution?
2. Recall that the standard deviation of a random variable with probability density function $f$ and mean $\mu$ is given by

$$
\sigma=\left(\int_{-\infty}^{+\infty}(x-\mu)^{2} f(x) \mathrm{d} x\right)^{1 / 2} .
$$

Compute the standard deviation $\sigma$ of a random variable with exponential probability density function with mean $\mu$.
3. Decide if the sequence $\left\{a_{n}\right\}$ converges or diverges. If it converges, find its limit.
(a) $a_{n}=\frac{1}{1+n^{2}}$
(b) $a_{n}=\frac{n}{n+3}$
(c) $a_{n}=\frac{1+n^{2}}{2+n}$
(d) $a_{n}=2^{1 / n}$
(e) $a_{n}=n$ !
(f) $a_{n}=\sqrt[n]{2 n}$
(g) $a_{n}=\frac{n!}{n^{n}}$
(h) $a_{n}=\left(\frac{n}{n+1}\right)^{n}$

