Homework Set 5

DUE: OCT 23-25, 2017 (AT THE BEGINNING OF RECITATION)

- 1. Consider the function $f(x) = \begin{cases} 0, & x < 0\\ Cx^3 e^{-x}, & x \ge 0. \end{cases}$
 - (a) What value of C makes the function f(x) a probability density?
 - (b) What is the mean of this probability distribution?
- 2. Recall that the standard deviation of a random variable with probability density function f and mean μ is given by

$$\sigma = \left(\int_{-\infty}^{+\infty} (x-\mu)^2 f(x) \,\mathrm{d}x\right)^{1/2}.$$

Compute the standard deviation σ of a random variable with exponential probability density function with mean μ .

3. Decide if the sequence $\{a_n\}$ converges or diverges. If it converges, find its limit.

(a)
$$a_n = \frac{1}{1+n^2}$$

(b) $a_n = \frac{n}{n+3}$
(c) $a_n = \frac{1+n^2}{2+n}$
(d) $a_n = 2^{1/n}$
(e) $a_n = n!$
(f) $a_n = \sqrt[n]{2n}$
(g) $a_n = \frac{n!}{n^n}$
(h) $a_n = \left(\frac{n}{n+1}\right)^n$