Homework Set 4

Due: Oct 16-18, 2017 (at the beginning of recitation)

- 1. Use a trigonometric substitution to compute the following integrals:
 - (a) $\int \frac{\mathrm{d}x}{x^2\sqrt{x^2+4}}$
 - (b) $\int_0^{2\sqrt{2}} \frac{x^2 dx}{(16-x^2)^{3/2}}$
 - (c) $\int_0^{1/2} \sqrt{1 4x^2} \, \mathrm{d}x$
 - $(d) \int_0^2 \sqrt{16 x^2} \, \mathrm{d}x$
- 2. Estimate the area under the graph of $f(x) = \frac{\sin x}{x}$ over $0 \le x \le \pi$ using:
 - (a) Trapezoidal rule with four sub-intervals;
 - (b) Simpson's rule with four sub-intervals.
- 3. Find the area of the region enclosed by the graphs of $y = \frac{1}{x+1}$ and $y = \frac{1}{x+2}$ on the interval $[0, \infty)$.
- 4. Compute the following integrals if they converge, or justify why they diverge:
 - (a) $\int_{1}^{\infty} x^{-2} e^{2x} \, \mathrm{d}x$
 - (b) $\int_{1}^{\infty} x^2 e^{-2x} dx$
 - (c) $\int_0^1 \frac{\mathrm{d}x}{(2x-1)^{1/3}}$
 - $(d) \int_0^\infty \frac{3x}{x^2 + 4} \, \mathrm{d}x$
 - (e) $\int_0^1 \frac{4x \, dx}{(x+1)(x^2+1)}$
 - (f) $\int_{4}^{\infty} \frac{\mathrm{d}x}{x^2 6x + 10}$
 - (g) $\int_0^{\pi/2} \tan \theta \, d\theta$