Homework Set 1

Due: Sep 11-13, 2017 (at the beginning of Recitation)

1. The base of a solid is the region between the x-axis, $y=\sqrt{x}$, and $x=4$. Each cross section perpendicular to the x-axis is a semicircle with diameter running along the base. What is the volume of this solid?
2. Find the volume of the solid obtained by revolving the region bounded by the line $y=x$ and the parabola $y=x^{2}$ about the line $x=3$.
3. Find the volume of the solid obtained by revolving the region bounded by $y=e^{x}, x=0$, $y=0$, and $x=\ln 3$ about the x-axis.
4. Find the volume of the solid obtained by revolving the region bounded by $x=y^{2}$ and $y=x-2$ about the y-axis.
5. Find the volume of the solid obtained by revolving the region bounded by $y=\sqrt{x}$, $x=1, y=0$, and $x=4$ about the y-axis.
6. (Thomas $\S 6.1$ Exercise 62, p. 375) The arch $y=\sin x, 0 \leq x \leq \pi$ is revolved about the line $y=c, 0 \leq c \leq 1$, to generate a solid S_{c}.
a) What is the value of $0 \leq c \leq 1$ that minimizes the volume of the solid S_{c} ?
b) What is the value of $0 \leq c \leq 1$ that maximizes the volume of the solid S_{c} ?
7. (Thomas $\S 6.2$ Exercise 43, p. 383) Derive the formula for the volume of a right circular cone of height h and radius r using an appropriate solid of revolution.
