Homework Set 1

DUE: SEP 11-13, 2017 (AT THE BEGINNING OF RECITATION)

- 1. The base of a solid is the region between the x-axis, $y = \sqrt{x}$, and x = 4. Each cross section perpendicular to the x-axis is a semicircle with diameter running along the base. What is the volume of this solid?
- 2. Find the volume of the solid obtained by revolving the region bounded by the line y = xand the parabola $y = x^2$ about the line x = 3.
- 3. Find the volume of the solid obtained by revolving the region bounded by $y = e^x$, x = 0, y = 0, and $x = \ln 3$ about the x-axis.
- 4. Find the volume of the solid obtained by revolving the region bounded by $x = y^2$ and y = x 2 about the y-axis.
- 5. Find the volume of the solid obtained by revolving the region bounded by $y = \sqrt{x}$, x = 1, y = 0, and x = 4 about the y-axis.
- 6. (Thomas §6.1 Exercise 62, p. 375) The arch $y = \sin x$, $0 \le x \le \pi$ is revolved about the line y = c, $0 \le c \le 1$, to generate a solid S_c .
 - a) What is the value of $0 \le c \le 1$ that *minimizes* the volume of the solid S_c ?
 - b) What is the value of $0 \le c \le 1$ that maximizes the volume of the solid S_c ?
- 7. (Thomas §6.2 Exercise 43, p. 383) Derive the formula for the volume of a right circular cone of height h and radius r using an appropriate solid of revolution.