MAT347 /644, Fall 2023 Renato Ghini Bettiol

Lecture 5

1. EXTREMAL POINTS

Recall that S C R" is conver if given any z,y € S, the line segment (1 —t)z +ty, 0 < ¢ <1,
joining x and y lies entirely in S. A set S C R™ is bounded if there exists R > 0 such that all points
in S are at distance at most R from 0 € R", that is, for all x € S, ||z|| < R.

A point v € S in a convex set is called extremal if v= (1 —t)z +ty with xz,y € Sand 0 <t <1
implies that either t = 0 or ¢ = 1. In other words, v is extremal if it cannot be placed in the interior
of any line segment with endpoints in S.

Exercise 1. Determine the extremal points of the following convex sets:

(i) A bounded polyhedron S C R"”
(ii) The unit ball B = {z € R" : ||z]| < 1}

Solution to Exercise 1. The extremal points are:

(i) vertices of S (there are only finitely many);
(ii) all the points in the boundary 0B = {x € R™ : ||z|| = 1} (there are infinitely many)

A convexr combination of the points z1,...,z, € R™ is any point of the form

cir1 + -+ ey € R7,

T
where ¢1,...,¢, € Rosatisfy > ¢ = 1 and ¢ > 0 for all 1 < ¢ < r. The set of all convex
i=1
combinations of x1,...,z, is called the convex hull of x1,...,z,, and denoted conv(zy,...,z,).
Exercise 2. Prove that conv(zy,...,x,) is convex.

Exercise 3. What is the convex hull of 2 points in R"?
Exercise 4. What is the convex hull of n points in R??

The following are foundational statements that we will use but not prove. (You might want to
think about how you would prove them.)

Theorem 1. A polyhedron is bounded if and only if it does not contain a line.

Theorem 2 (Krein-Milman, baby version). A bounded polyhedron coincides with the convex hull
of its vertices (i.e., its extremal points).

By the above, “determining” a bounded polyhedron is the same as “determining” its vertices.
In order to do this using as input the description S = {x € R™ : Az < b} of a polyhedron as an
intersection of half-spaces a;fpx < b;, we use the following result:

Theorem 3. Consider the polyhedron S = {x € R"™ : Az < b}, where A is an m X n matric
and b € R™. A point v € S is a vertex of S if and only if there exist n linearly independent
inequality constraints of S that hold with equality at v, i.e., there exist iy, ... iy, € {1,...,m} such
that al v =";,, ..., al v="b;, and {a;,...,a;,} are linearly independent.

The above yields a method to find all vertices of a polyhedron S = {z € R" : Az < b}, namely
one can proceed as follows. For each[] subset {i1,...,i,} of {1,...,m}, do:

(i) Check if a;,,...,a;, are linearly independent (if NO, then STOP);

(ii) Compute the unique solution v € R™ to al v =b;,, ..., al v=1"b;,;

(iii) If v € S, i.e., Av < b, then v is a vertex. If not, then it is not a vertex.

INote there are (™) such subsets.



Running the above for loop through all subsets of {1,...,m} and collecting the resulting vertices,
one obtains the complete list of vertices of S. In particular, this proves that a polyhedron only has
finitely many vertices.

Exercise 5. Find all vertices of the polyhedron S = {x € R" : Az < b} where

-1 0 0

GA=|0 -1],6=10
1 1 1
2 4 12
1 1 5

) 0 1 5/2 . . .

(i) A= R b= Rk Note this polygon appeared in Lecture 3, Exercise 4.
-1 0 0
0o -1 0

2. LINEAR PROGRAMS IN ANY NUMBER OF VARIABLES
A general linear program (LP) in n variables x = (x1,x2,...,Z,) is an optimization problem of
the form

min  ciz1 +cxo+ -+ cpxy St a1 1+ a2 22 + a1n Th < by,

a1 1 + ag2 T2 + agp Ty < ba,

(1)

Am1 T1 + Am2 T2 + Qmn Ty, < by

The above constraints might have been obtained from linear constraints with <, =, or >, using
the elementary tricks we discussed in lecture, and might (or might not) include the nonnegativity
constraints x1 > 0, ...x, > 0. Recall that maximization problems reduce to the above as well.
Note that the above LP can be rewritten in matrix notation as

(2) min ¢’z st. Az <b,
where x = (z1,x2,...,2,) € R", c = (c1,c2,...,¢,) € R", b= (b1,...,by) € R™, and

ail a2 ... Qip

asy ano e as

A= "

aml Qm2 ... Gmn

The rows of A are denoted a1 = (a11,a12,...,01n)s -+ Gm = (Gm1,@m2, - - -, Amn). These conven-

tions are as in earlier lectures; in particular, the indices have ranges 1 <7 < mand 1 < 57 < n.
Finally, the following statement explains the relevance of extremal points.

Theorem 4. If the optimization problem is feasible and bounded, i.e., the polyhedron S =
{z € R" : Az < b} is nonempty and bounded, then there exists an extremal point v € S which is
an optimal solution.
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