
MAT347/644, Fall 2023 Renato Ghini Bettiol

Lecture 5

1. Extremal points

Recall that S ⊂ Rn is convex if given any x, y ∈ S, the line segment (1 − t)x + ty, 0 ≤ t ≤ 1,
joining x and y lies entirely in S. A set S ⊂ Rn is bounded if there exists R > 0 such that all points
in S are at distance at most R from 0 ∈ Rn, that is, for all x ∈ S, ‖x‖ ≤ R.

A point v ∈ S in a convex set is called extremal if v = (1− t)x + ty with x, y ∈ S and 0 ≤ t ≤ 1
implies that either t = 0 or t = 1. In other words, v is extremal if it cannot be placed in the interior
of any line segment with endpoints in S.

Exercise 1. Determine the extremal points of the following convex sets:

(i) A bounded polyhedron S ⊂ Rn

(ii) The unit ball B = {x ∈ Rn : ‖x‖ ≤ 1}

Solution to Exercise 1. The extremal points are:

(i) vertices of S (there are only finitely many);
(ii) all the points in the boundary ∂B = {x ∈ Rn : ‖x‖ = 1} (there are infinitely many)

A convex combination of the points x1, . . . , xr ∈ Rn is any point of the form

c1x1 + · · ·+ crxr ∈ Rn,

where c1, . . . , cr ∈ R satisfy
r∑

i=1
ci = 1 and ci ≥ 0 for all 1 ≤ i ≤ r. The set of all convex

combinations of x1, . . . , xr is called the convex hull of x1, . . . , xr, and denoted conv(x1, . . . , xr).

Exercise 2. Prove that conv(x1, . . . , xr) is convex.

Exercise 3. What is the convex hull of 2 points in Rn?

Exercise 4. What is the convex hull of n points in R2?

The following are foundational statements that we will use but not prove. (You might want to
think about how you would prove them.)

Theorem 1. A polyhedron is bounded if and only if it does not contain a line.

Theorem 2 (Krein-Milman, baby version). A bounded polyhedron coincides with the convex hull
of its vertices (i.e., its extremal points).

By the above, “determining” a bounded polyhedron is the same as “determining” its vertices.
In order to do this using as input the description S = {x ∈ Rn : Ax ≤ b} of a polyhedron as an
intersection of half-spaces aTi x ≤ bi, we use the following result:

Theorem 3. Consider the polyhedron S = {x ∈ Rn : Ax ≤ b}, where A is an m × n matrix
and b ∈ Rm. A point v ∈ S is a vertex of S if and only if there exist n linearly independent
inequality constraints of S that hold with equality at v, i.e., there exist i1, . . . , in ∈ {1, . . . ,m} such
that aTi1 v = bi1, . . . , a

T
in
v = bin and {ai1 , . . . , ain} are linearly independent.

The above yields a method to find all vertices of a polyhedron S = {x ∈ Rn : Ax ≤ b}, namely
one can proceed as follows. For each1 subset {i1, . . . , in} of {1, . . . ,m}, do:

(i) Check if ai1 , . . . , ain are linearly independent (if NO, then STOP);
(ii) Compute the unique solution v ∈ Rn to aTi1 v = bi1 , . . . , aTin v = bin ;

(iii) If v ∈ S, i.e., Av ≤ b, then v is a vertex. If not, then it is not a vertex.

1Note there are
(
m
n

)
such subsets.



Running the above for loop through all subsets of {1, . . . ,m} and collecting the resulting vertices,
one obtains the complete list of vertices of S. In particular, this proves that a polyhedron only has
finitely many vertices.

Exercise 5. Find all vertices of the polyhedron S = {x ∈ Rn : Ax ≤ b} where

(i) A =

−1 0
0 −1
1 1

, b =

0
0
1



(ii) A =


2 4
1 1
0 1
1 −1
−1 0
0 −1

, b =


12
5

5/2
4
0
0

. Note this polygon appeared in Lecture 3, Exercise 4.

2. Linear programs in any number of variables

A general linear program (LP) in n variables x = (x1, x2, . . . , xn) is an optimization problem of
the form

(1)

min c1x1 + c2x2 + · · ·+ cnxn s.t. a11 x1 + a12 x2 + a1n xn ≤ b1,

a21 x1 + a22 x2 + a2n xn ≤ b2,

. . .

am1 x1 + am2 x2 + amn xn ≤ bm.

The above constraints might have been obtained from linear constraints with ≤, =, or ≥, using
the elementary tricks we discussed in lecture, and might (or might not) include the nonnegativity
constraints x1 ≥ 0, . . .xn ≥ 0. Recall that maximization problems reduce to the above as well.

Note that the above LP can be rewritten in matrix notation as

(2) min cT x s.t. A x ≤ b,

where x = (x1, x2, . . . , xn) ∈ Rn, c = (c1, c2, . . . , cn) ∈ Rn, b = (b1, . . . , bm) ∈ Rm, and

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


The rows of A are denoted a1 = (a11, a12, . . . , a1n), . . . , am = (am1, am2, . . . , amn). These conven-
tions are as in earlier lectures; in particular, the indices have ranges 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Finally, the following statement explains the relevance of extremal points.

Theorem 4. If the optimization problem (2) is feasible and bounded, i.e., the polyhedron S =
{x ∈ Rn : Ax ≤ b} is nonempty and bounded, then there exists an extremal point v ∈ S which is
an optimal solution.
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