Lecture 24

1. Duality

1.1. LP. Recall from Lectures 14 - 15 that the dual of the primal LP

$$
\begin{array}{rll}
\min \quad c^{T} x \quad \text { s.t. } & A x=b, \\
& x \geq 0,
\end{array}
$$

is given by

$$
\max \quad b^{T} y \quad \text { s.t. } \quad A^{T} y \leq c
$$

Feasible solutions give upper/lower bounds for the optimal value of the dual problem, since

$$
c^{T} x-b^{T} y=x^{T} c-(A x)^{T} y=x^{T}\left(c-A^{T} y\right) \geq 0 .
$$

Moreover, the Strong Duality Theorem ensured that if both primal and dual are feasible, then optimal solutions x_{*} and y_{*} exist and the corresponding optimal values agree, that is, $c^{T} x_{*}=b^{T} y_{*}$.
1.2. SDP. Given the primal SDP on the variable $X \in \operatorname{Sym}^{2}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
\min \langle C, X\rangle \text { s.t. } & \left\langle A_{i}, X\right\rangle=b_{i}, i=1, \ldots, m, \\
& X \succeq 0,
\end{aligned}
$$

the dual SDP is

$$
\max \quad b^{T} y \quad \text { s.t. } \quad \sum_{i=1}^{m} y_{i} A_{i} \preceq C,
$$

on the variable $y \in \mathbb{R}^{m}$. Similarly to LPs, feasible solutions give upper/lower bounds for the dual:

$$
\langle C, X\rangle-b^{T} y=\langle C, X\rangle-\sum_{i=1}^{m} y_{i}\left\langle A_{i}, X\right\rangle=\left\langle C-\sum_{i=1}^{m} y_{i} A_{i}, X\right\rangle \geq 0 .
$$

Exercise 1. Justify the last inequality: prove that if $P, Q \in \operatorname{Sym}^{2}\left(\mathbb{R}^{d}\right)$ satisfy $P \succeq 0$ and $Q \succeq 0$, then $\langle P, Q\rangle \geq 0$ and equality holds if and only if $P Q=Q P=0$. Hint: $P=R^{T} R, Q=S^{T} S$.
Solution to Exercise 1. Following the hint, recall that since $P, Q \in \operatorname{Sym}^{2}\left(\mathbb{R}^{d}\right)$ satisfy $P \succeq 0$ and $Q \succeq 0$, there exist $R, S \in \operatorname{Sym}^{2}\left(\mathbb{R}^{d}\right)$ such that $P=R^{T} R, Q=S^{T} S$. Then,

$$
\begin{aligned}
\langle P, Q\rangle=\operatorname{tr} P Q^{T}=\operatorname{tr}\left(R^{T} R\right)\left(S^{T} S\right)^{T} & =\operatorname{tr} R^{T} R S^{T} S \\
& =\operatorname{tr}\left(R S^{T}\right)\left(S R^{T}\right)=\operatorname{tr}\left(R S^{T}\right)\left(R S^{T}\right)^{T}=\left\langle R S^{T}, R S^{T}\right\rangle \geq 0 .
\end{aligned}
$$

However, strong duality fails for SDP, see [BPT13, Ex 2.14] for an example. In order to have equality between the optimal values of primal and dual SDP, a sufficient condition is that both are strictly feasible, i.e., there exists $X \succ 0$ satisfying the constraints of the primal and there exists y such that $C-\sum_{i} y_{i} A_{i} \succ 0$ for the dual.

2. Using SDP to solve a geometric problem

Consider the problem of finding the smallest disk in \mathbb{R}^{2} that contains a given number of ellipses ${ }^{1}$

Assume the ellipses are the sublevelsets $\mathcal{E}_{i}=\left\{x \in \mathbb{R}^{2}: q_{i}(x) \leq 0\right\}$ of the quadratic functions

$$
q_{i}(x)=x^{T} A_{i} x+2 b_{i}^{T} x+c_{i},
$$

where $A_{i} \in \operatorname{Sym}^{2}\left(\mathbb{R}^{2}\right)$ is a positive-semidefinite matrix, $b_{i} \in \mathbb{R}^{2}, c_{i} \in \mathbb{R}$. We shall use the following:
Proposition 1. The ellipse $\mathcal{E}=\left\{x \in \mathbb{R}^{2}: q(x) \leq 0\right\}$ contains the ellipse $\overline{\mathcal{E}}=\left\{x \in \mathbb{R}^{2}: \bar{q}(x) \leq 0\right\}$, where $q(x)=x^{T} A x+2 b^{T} x+c$ and $\bar{q}(x)=x^{T} \bar{A} x+2 \bar{b}^{T} x+\bar{c}$ if and only if there is $\tau \geq 0$ such that ${ }^{2}$

$$
\left(\begin{array}{cc}
A & b \\
b^{T} & c
\end{array}\right) \preceq \tau\left(\begin{array}{cc}
\bar{A} & \bar{b} \\
\bar{b}^{T} & \bar{c}
\end{array}\right) .
$$

Thus, a circle $\mathcal{C}=\left\{x \in \mathbb{R}^{2}: q_{c}(x) \leq 0\right\}$, where $q_{c}(x)=x^{T} x-2 x_{c}^{T} x+\gamma$ contains the ellipses \mathcal{E}_{i}, $i=1, \ldots, p$, if and only if there exists $\tau_{i} \geq 0$ such that

$$
\left(\begin{array}{cc}
\mathrm{Id} & -x_{c} \\
-x_{c}^{T} & \gamma
\end{array}\right) \preceq \tau_{i}\left(\begin{array}{cc}
A_{i} & b_{i} \\
b_{i}^{T} & c_{i}
\end{array}\right), \quad i=1, \ldots, p .
$$

Exercise 2. a) Show that the radius of the circle \mathcal{C} is $\sqrt{x_{c}^{T} x_{c}-\gamma}$.
b) Write an SDP that is equivalent to the geometric optimization problem at hand:

$$
\begin{array}{cccc}
\min \quad \sqrt{x_{c}^{T} x_{c}-\gamma} & \text { s.t. } \quad\left(\begin{array}{cc}
\operatorname{Id} & -x_{c} \\
-x_{c}^{T} & \gamma
\end{array}\right) \preceq \tau_{i}\left(\begin{array}{cc}
A_{i} & b_{i} \\
b_{i}^{T} & c_{i}
\end{array}\right), \quad i=1, \ldots, p . \\
\tau_{i} \geq 0, & i=1, \ldots, p .
\end{array}
$$

Solution to Exercise 2. a) The radius can be found by completing the square in $q_{c}(x) \leq 0$. b) In order to minimize the radius of \mathcal{C}, we minimize t such that

$$
\left(\begin{array}{cc}
\mathrm{Id} & x_{c} \\
x_{c}^{T} & t+\gamma
\end{array}\right) \succeq 0 .
$$

[^0]Thus, we arrive at the SDP

$$
\begin{aligned}
\min \quad t \text { s.t. } & \left(\begin{array}{cc}
\mathrm{Id} & -x_{c} \\
-x_{c}^{T} & \gamma
\end{array}\right) \preceq \tau_{i}\left(\begin{array}{ll}
A_{i} & b_{i} \\
b_{i}^{T} & c_{i}
\end{array}\right), \quad i=1, \ldots, p . \\
& \tau_{i} \geq 0, \quad i=1, \ldots, p . \\
& \left(\begin{array}{cc}
\mathrm{Id} & x_{c} \\
x_{c}^{T} & t+\gamma
\end{array}\right) \succeq 0 .
\end{aligned}
$$

See file lecture24.nb for an implementation.

References

[BPT13] G. Blekherman, P. A. Parrilo, and R. R. Thomas. Semidefinite optimization and convex algebraic geometry, vol. 13 of MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, 2013.
[VB96] L. Vandenberghe, S. Boyd. Semidefinite Programming, SIAM Review, Vol. 38, No. 1, 49-95, 1996. https://web.stanford.edu/~boyd/papers/pdf/semidef_prog.pdf

[^0]: ${ }^{1}$ This example is taken from VB96, p. 58].
 ${ }^{2}$ We are implicitly assuming that both ellipses have nonempty interior.

