Lecture 21

1. Semialgebraic sets

A basic closed semialgebraic set is a set $S \subset \mathbb{R}^{n}$ given by simultaneous polynomial inequalities,

$$
S=\left\{x \in \mathbb{R}^{n}: p_{1}(x) \geq 0, \ldots, p_{r}(x) \geq 0\right\}
$$

where $p_{i}(x) \in \mathbb{R}[x], 1 \leq i \leq r$, are polynomials. A general semialgebraic set is a finite Boolean combination of basic closed semialgebraic sets.
Exercise 1. Show (write a proof) that a finite intersection of basic closed semialgebraic sets is basic closed semialgebraic, but show (by finding a counter-example) that the same is not true for a finite union.

Solution to Exercise 1. By induction, it suffices to show that the intersection of a pair of sets

$$
\begin{aligned}
& S_{1}=\left\{x \in \mathbb{R}^{n}: p_{1}(x) \geq 0, \ldots, p_{r}(x) \geq 0\right\} \\
& S_{2}=\left\{x \in \mathbb{R}^{n}: q_{1}(x) \geq 0, \ldots, q_{m}(x) \geq 0\right\}
\end{aligned}
$$

is basic closed semialgebraic. This is clear since

$$
S_{1} \cap S_{2}=\left\{x \in \mathbb{R}^{n}: p_{1}(x) \geq 0, \ldots, p_{r}(x) \geq 0, q_{1}(x) \geq 0, \ldots, q_{m}(x) \geq 0\right\}
$$

The union of two basic closed semialgebraic sets need not be basic closed semialgebraic. A simple example is $\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0\right\} \cup\left\{(x, y) \in \mathbb{R}^{2}: y \geq 0\right\}$. (Why?) Another similar counter-example is the convex set S in Exercise 1 of the Lecture 20 (see figure below) given by the union of

- the disk S_{1} of radius 1 centered at $(2,0)$,
- the triangle S_{2} with vertices $(0,0)$ and $(3 / 2, \pm \sqrt{3} / 2)$.

Clearly, S_{1} and S_{2} are basic closed semialgebraic, since

- $S_{1}=\left\{(x, y) \in \mathbb{R}^{2}: 1-(x-2)^{2}-y^{2} \geq 0\right\}$,
- $S_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0, \frac{1}{\sqrt{3}} x+y \geq 0, \frac{1}{\sqrt{3}} x-y \geq 0\right\}$.

Since part of the boundary of $S=S_{1} \cup S_{2}$ is the circle of radius 1 centered at (2,0), if S is basic closed semialgebraic, i.e., $S=\left\{(x, y) \in \mathbb{R}^{2}: p_{1}(x, y) \geq 0, \ldots, p_{r}(x, y) \geq 0\right\}$, then there exists j such that $p_{j}(x, y)=h(x, y)\left(1-(x-2)^{2}-y^{2}\right)^{k}$ for some odd $k \geq 1$ and $h(x, y)$ not divisible by $\left(1-(x-2)^{2}-y^{2}\right)$. On the other hand, unless $h(x, y)$ is divisible by $\left(1-(x-2)^{2}-y^{2}\right)$, the points in the interior of S that also lie on the circle of radius 1 centered at $(2,0)$ cannot be interior points of S. (Why?) This contradiction implies that S cannot be basic closed semialgebraic $\overbrace{}^{1}$

[^0]An important theoretic result about semialgebraic sets is the following:
Theorem 1 (Tarski-Seidenberg). If $S \subset \mathbb{R}^{n} \oplus \mathbb{R}^{m}$ is a semialgebraic set and $\pi: \mathbb{R}^{n} \oplus \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is the projection $\pi(x, y)=x$, then $\pi(S) \subset \mathbb{R}^{n}$ is semialgebraic.

The above theorem implies that sentences given by a finite Boolean combination of polynomial inequalities where certain variables are quantified (using quantifiers \exists or \forall), such as

$$
\exists x \in \mathbb{R}: a x^{2}+b x+c=0, a>0
$$

admit an equivalent description as a finite Boolean combination of quantifier-free polynomial inequalities in the remaining variables, in the above case,

$$
b^{2}-4 a c \geq 0 .
$$

This procedure is known as quantifier elimination, and (although very slow) it can be implemented algorithmically; e.g., on Mathematica, using CylindricalDecomposition, see lecture21.nb for more examples. Note that, if all variables are quantified, then the output of quantifier elimination is simply True (equivalently, $0=0$) or False (equivalently, $0=1$).

Exercise 2. Show that a linear projection of a basic closed semialgebraic set need not be closed.
Solution to Exercise 2. Let $S^{\prime}=\left\{(x, y) \in \mathbb{R}^{2}:\left(\begin{array}{ll}x & 1 \\ 1 & y\end{array}\right) \succeq 0\right\}$ and $\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the projection $\pi(x, y)=x$. Then $S^{\prime}=\left\{(x, y) \in \mathbb{R}^{2}: x y \geq 1, x \geq 0, y \geq 0\right\}$ is closed (basic) semialgebraic but $S=\pi\left(S^{\prime}\right)=(0,+\infty)$ is not closed.

Using the above, we can show that $:^{2}$
Proposition 1. A spectrahedron is a basic closed semialgebraic set. A spectrahedral shadow is a closed semialgebraic set, but not necessarily basic.
Proof. Let $S=\left\{x \in \mathbb{R}^{n}: M(x) \succeq 0\right\}$ be a spectrahedron, where $M: \mathbb{R}^{n} \rightarrow \operatorname{Sym}^{2}\left(\mathbb{R}^{d}\right)$ is affinelinear, and recall that $M(x) \succeq 0$ if and only if all d eigenvalues of $M(x)$ are nonnegative. These eigenvalues are the d roots of the characteristic polynomial $p_{M(x)}(t)=\operatorname{det}(t \operatorname{Id}-M(x))$, so $x \in S$ if and only if $p_{M(x)}(-t)$ has no positive roots. Equivalently ${ }^{3} x \in S$ if and only if all the coefficients of $(-1)^{d} p_{M(x)}(-t)$ are ≥ 0, so we can take $p_{1}, \ldots, p_{r} \in \mathbb{R}[x]$ to be those coefficients. Thus, S is a basic closed semialgebraic set.

A spectrahedral shadow is a closed semialgebraic set as a consequence of the above and the Tarski-Seidenberg theorem. As the example in Exercise 1 above shows, it need not be basic.

[^1]
[^0]: ${ }^{1}$ For a general statement obstructing the algebraic boundary (i.e., the Zariski-closure of the topological boundary) of basic semialgebraic sets from containing interior points, see "Algebraic Boundaries of Convex Semi-Algebraic Sets" by R. Sinn, Lemma 2.2.4 (page 19). https://d-nb.info/1052418252/34

[^1]: ${ }^{2}$ This proof is taken from "Geometry of Linear Matrix Inequalities" by T. Netzer and D. Plaumann.
 ${ }^{3}$ If a polynomial $p \in \mathbb{R}[x]_{d}$ has roots $-\lambda_{i}$, with $\lambda_{i} \geq 0$ for all $i=1, \ldots, d$ then $p(x)=\left(x+\lambda_{1}\right) \cdots\left(x+\lambda_{d}\right)$, i.e., all its coefficients are nonnegative. The converse is obvious.

