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Lecture 21

1. Semialgebraic sets

A basic closed semialgebraic set is a set S ⊂ Rn given by simultaneous polynomial inequalities,

S = {x ∈ Rn : p1(x) ≥ 0, . . . , pr(x) ≥ 0},
where pi(x) ∈ R[x], 1 ≤ i ≤ r, are polynomials. A general semialgebraic set is a finite Boolean
combination of basic closed semialgebraic sets.

Exercise 1. Show (write a proof) that a finite intersection of basic closed semialgebraic sets is
basic closed semialgebraic, but show (by finding a counter-example) that the same is not true for
a finite union.

Solution to Exercise 1. By induction, it suffices to show that the intersection of a pair of sets

S1 = {x ∈ Rn : p1(x) ≥ 0, . . . , pr(x) ≥ 0}
S2 = {x ∈ Rn : q1(x) ≥ 0, . . . , qm(x) ≥ 0}

is basic closed semialgebraic. This is clear since

S1 ∩ S2 = {x ∈ Rn : p1(x) ≥ 0, . . . , pr(x) ≥ 0, q1(x) ≥ 0, . . . , qm(x) ≥ 0}.
The union of two basic closed semialgebraic sets need not be basic closed semialgebraic. A simple

example is {(x, y) ∈ R2 : x ≥ 0} ∪ {(x, y) ∈ R2 : y ≥ 0}. (Why?) Another similar counter-example
is the convex set S in Exercise 1 of the Lecture 20 (see figure below) given by the union of

• the disk S1 of radius 1 centered at (2, 0),
• the triangle S2 with vertices (0, 0) and

(
3/2,±

√
3/2

)
.

Clearly, S1 and S2 are basic closed semialgebraic, since

• S1 =
{

(x, y) ∈ R2 : 1− (x− 2)2 − y2 ≥ 0
}

,

• S2 =
{

(x, y) ∈ R2 : x ≥ 0, 1√
3
x+ y ≥ 0, 1√

3
x− y ≥ 0

}
.

Since part of the boundary of S = S1 ∪ S2 is the circle of radius 1 centered at (2, 0), if S is basic
closed semialgebraic, i.e., S = {(x, y) ∈ R2 : p1(x, y) ≥ 0, . . . , pr(x, y) ≥ 0}, then there exists j
such that pj(x, y) = h(x, y)(1 − (x − 2)2 − y2)k for some odd k ≥ 1 and h(x, y) not divisible by
(1− (x− 2)2 − y2). On the other hand, unless h(x, y) is divisible by (1− (x− 2)2 − y2), the points
in the interior of S that also lie on the circle of radius 1 centered at (2, 0) cannot be interior points
of S. (Why?) This contradiction implies that S cannot be basic closed semialgebraic.1
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1For a general statement obstructing the algebraic boundary (i.e., the Zariski-closure of the topological boundary)
of basic semialgebraic sets from containing interior points, see “Algebraic Boundaries of Convex Semi-Algebraic Sets”
by R. Sinn, Lemma 2.2.4 (page 19). https://d-nb.info/1052418252/34

https://d-nb.info/1052418252/34


An important theoretic result about semialgebraic sets is the following:

Theorem 1 (Tarski–Seidenberg). If S ⊂ Rn ⊕Rm is a semialgebraic set and π : Rn ⊕Rm → Rn

is the projection π(x, y) = x, then π(S) ⊂ Rn is semialgebraic.

The above theorem implies that sentences given by a finite Boolean combination of polynomial
inequalities where certain variables are quantified (using quantifiers ∃ or ∀), such as

∃x ∈ R : ax2 + bx+ c = 0, a > 0,

admit an equivalent description as a finite Boolean combination of quantifier-free polynomial in-
equalities in the remaining variables, in the above case,

b2 − 4ac ≥ 0.

This procedure is known as quantifier elimination, and (although very slow) it can be implemented
algorithmically; e.g., on Mathematica, using CylindricalDecomposition, see lecture21.nb for
more examples. Note that, if all variables are quantified, then the output of quantifier elimination
is simply True (equivalently, 0 = 0) or False (equivalently, 0 = 1).

Exercise 2. Show that a linear projection of a basic closed semialgebraic set need not be closed.

Solution to Exercise 2. Let S′ =

{
(x, y) ∈ R2 :

(
x 1
1 y

)
� 0

}
and π : R2 → R be the projection

π(x, y) = x. Then S′ = {(x, y) ∈ R2 : x y ≥ 1, x ≥ 0, y ≥ 0} is closed (basic) semialgebraic but
S = π(S′) = (0,+∞) is not closed.

Using the above, we can show that:2

Proposition 1. A spectrahedron is a basic closed semialgebraic set. A spectrahedral shadow is a
closed semialgebraic set, but not necessarily basic.

Proof. Let S = {x ∈ Rn : M(x) � 0} be a spectrahedron, where M : Rn → Sym2(Rd) is affine-
linear, and recall that M(x) � 0 if and only if all d eigenvalues of M(x) are nonnegative. These
eigenvalues are the d roots of the characteristic polynomial pM(x)(t) = det(t Id−M(x)), so x ∈ S if

and only if pM(x)(−t) has no positive roots. Equivalently,3 x ∈ S if and only if all the coefficients

of (−1)dpM(x)(−t) are ≥ 0, so we can take p1, . . . , pr ∈ R[x] to be those coefficients. Thus, S is a
basic closed semialgebraic set.

A spectrahedral shadow is a closed semialgebraic set as a consequence of the above and the
Tarski–Seidenberg theorem. As the example in Exercise 1 above shows, it need not be basic. �

2This proof is taken from “Geometry of Linear Matrix Inequalities” by T. Netzer and D. Plaumann.
3If a polynomial p ∈ R[x]d has roots −λi, with λi ≥ 0 for all i = 1, . . . , d then p(x) = (x+ λ1) · · · (x+ λd), i.e., all

its coefficients are nonnegative. The converse is obvious.
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