
MAT347/644, Fall 2023 Renato Ghini Bettiol

Lecture 18

1. Spectrahedra

Recall that a symmetric n × n matrix A is positive-semidefinite, which we denote by A � 0, if
for all x ∈ Rn we have xTAx ≥ 0. Similarly, A is called positive-definite, written A � 0, if for all
x ∈ Rn \ {0}, we have xTAx > 0. We denote by CPSD := {X ∈ Sym2(Rn) : X � 0} the (closed)
convex cone of positive-semidefinite n × n matrices, whose interior is the (open) convex cone of
positive-definite matrices.

The natural inner product in the vector space Sym2(Rn) of symmetric n × n matrices is given
by 〈X,Y 〉 = trXY ; so, given A ∈ Sym2(Rn) and b ∈ R, the affine equation 〈A,X〉 = b determines
a hyperplane in Sym2(Rn). A subset S ⊂ Sym2(Rn) is a spectrahedron if it is of the form

(1) S =
{
X ∈ Sym2(Rn) : 〈Ai, X〉 = bi, 1 ≤ i ≤ m, and X � 0

}
,

for some Ai ∈ Sym2(Rn), 1 ≤ i ≤ m. Equivalently, S is a spectrahedron if it can be described by
a linear matrix inequality, that is,

(2) S =
{
x ∈ Rd : M0 + x1M1 + · · ·+ xdMd � 0

}
,

where Mj ∈ Sym2(Rn), 0 ≤ j ≤ d. Both definitions are equivalent, but before arguing that, we go
over some examples.

Exercise 1. Use Sylvester’s criterion to describe geometrically the following spectrahedra in R2:

a) S =

{
(x1, x2) ∈ R2 :

(
1 + x1 x2
x2 1− x1

)
� 0

}
,

b) S =

(x1, x2) ∈ R2 :


1 + x1

1− x1
1 + x2

1− x2

 � 0

,

c) S =

(x1, x2) ∈ R2 :

 1 x1 x2
x1 1 x1
x2 x1 1

 � 0

.

Note that the above are spectrahedral descriptions of the form (2). Can you find an equivalent
description of the form (1) for each of them?

Solution to Exercise 1. The spectrahedra are as follows:

a) S = {(x1, x2) ∈ R2 : x21 + x22 ≤ 1} is the unit disk in R2.
b) S = {(x1, x2) ∈ R2 : −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1} is a square in R2.
c) S = {(x1, x2) ∈ R2 : 2x21−1 ≤ x2 ≤ 1} is the bounded region between the parabola x2 = 2x21−1

and the line x2 = 1.
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Exercise 2. Show that the spectrahedral descriptions (1) and (2) are equivalent.



Solution to Exercise 2. To show that a spectrahedron of the form (1) can be described in the form
(2), note that {X ∈ Sym2(Rn) : 〈Ai, X〉 = bi, 1 ≤ i ≤ m} is an affine subspace of Sym2(Rn), hence
it is a translation of a linear subspace span{M1, . . . ,Md} ⊂ Sym2(Rn) by a vector M0 ∈ Sym2(Rn).
Thus, S = {X ∈ Sym2(Rn) : X = M0 + x1M1 + · · · + xdMd for some x ∈ Rd, and X � 0}, so it
is of the form (2).

Conversely, to show that a spectrahedron of the form (2) can be described in the form (1), let
ϕ(x) = M0 + x1M1 + · · ·+ xdMd, so that S = {x ∈ Rd : ϕ(x) � 0}. The map ϕ : Rd → Sym2(Rn)
is affine-linear, hence its image is an affine subspace of Sym2(Rn). In particular, there exist some
Ai ∈ Sym2(Rn) and bi ∈ R, 1 ≤ i ≤ m, so that imϕ = {X ∈ Sym2(Rn) : 〈Ai, X〉 = bi, 1 ≤ i ≤ m}.
Thus, S = {X ∈ Sym2(Rn) : X = ϕ(x) for some x ∈ Rd, and X � 0} is of the form (1).

Exercise 3. Prove that spectrahedra are convex.

Solution to Exercise 3. Spectrahedra are intersections of affine subspaces with the convex cone
of positive-semidefinite matrices, and the intersection of convex sets is convex.

Exercise 4. Prove that all polyhedra are spectrahedra. Clearly, the converse is not true, but find
a necessary and sufficient condition on the matrices Mj ∈ Sym2(Rn) for (2) to be a polyhedron.

Solution to Exercise 4. A polyhedron is described by finitely many, say n, affine linear inequali-
ties. Thus, it can be written as the set of x ∈ Rd such that M0+x1M1+· · ·+xdMd � 0 for diagonal
matrices Mj ∈ Sym2(Rn), and is hence of the form (2). A necessary and sufficient condition for
M0 + x1M1 + · · ·+ xdMd � 0 to describe a polyhedron is that all matrices Mj commute, in which
case they are simultaneously diagonalizable.
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