MAT347 /644, Fall 2023 Renato Ghini Bettiol
Lecture 17

1. REVIEW OF LINEAR ALGEBRA

Recall from last lecture that A € R is an eigenvalue for an n X n matrix A if the linear equation
Ax = Az has a nontrivial solution x # 0. Equivalently, eigenvalues are the roots of the characteristic
polynomial p(\) = det(AId —A). The matrix A is diagonalizable if its eigenvectors form a basis
of R"; equivalently, if there exists an invertible matrix P and a diagonal matrix D such that
A= PDP~!. We will make frequent use of the following important algebraic results.

Theorem 1. If A is symmetric, that is, AT = A, then A is orthogonally diagonalizable, that is,
there exists a matriz P such that PTP =1d and A = PDP~' = PDPT, where D is diagonal.

Theorem 2. The characteristic polynomial p(A) of an n X n matriz A satisfies
p(A) = det(A\Td —A4) = "(=1)F tr(A*A) A" F,
k=0
where tr(AFA) is the sum of all principal minoreﬂ of A of size k.

2. POSITIVE-SEMIDEFINITE MATRICES

A symmetric n x n matrix A is positive-semidefinite if for all z € R"™ we have 27 Az > 0, we
write A = 0 for short. Note that g(z) = z¥ Az is the quadratic form associated to A4, so A = 0
means that g(x) > 0 for all z € R™. More generally, A = 0 has several equivalent characterizations:

Theorem 3. If A is an n X n symmetric matriz of rank r, then the following are equivalent:

) All eigenvalues of A are nonnegative;

) There exists a r x n matriz Q such thaﬂ A=QTQ;

) There exists a symmetric and positive-definite n X n matriaﬂ R such that A = R?;
) All principal minors of A are nonnegative;

Exercise 1. Use Theorem [I| to prove the equivalence (1) <= (2).

The equivalence (1) <= (5) is very useful for computations, and is known as Sylvester’s criterion.

Similarly, A is called positive-definite, written A > 0, if for all x € R™\ {0}, we have 7 Az > 0.
There is an analogous version of Theorem [3| giving equivalent characterizations of A > 0, a notable
simplification is that in (5) and (6) it suffices to have that leading principal minors are positive,
i.e., those consisting of rows and columns {1,...,k} for all 1 < k <n.

Exercise 2. Use Sylvester’s criterion to determine if the following matrices are positive-semidefinite.
If so, check if they are positive-definite.

1 1 1 0
011
3 4 1 2 -1 2 0 0
A‘<4 3)’ b= }88’0_ 1 -1 3 1’D_<0 —1>
0 2 1 4

Exercise 3. Describe geometrically the set S = {(:c, y,2) € R?: <z Z) - O}.

1Recall that a principal minor of A of size k is the determinant of a submatrix of A obtained by selecting rows
{i1,...,%} and columns {41,...,%}.

2This is often called the Cholesky factorization.

3We often write R = V/A.



Generalizing the example above, note that the set Cpsp := {X € Sym?(R") : X > 0} of
positive-semidefinite n x n matrices form a convex cone in the vector space Sym?(R™) of symmetric
n x n matrices. The natural inner product in Sym?(R") is given by (X,Y) = tr XY; so, given
A € Sym?(R™) and b € R, the affine equation (A, X) = b determines a hyperplane in Sym?(R").

A subset S C Sym?(R") is a spectrahedron if it is of the form

S={X €Sym*(R") : (4;,X) =b;,1 <i<m, and X = 0},

for some A; € Sym?(R™), 1 < i < m. Equivalently, S is a spectrahedron if it can be described by
a linear matriz inequality, that is,

S={zeR": Fy+az1F + +xqF; =0},
where F; € Sym?(R"), 0 < j < d.
Exercise 4. Prove that spectrahedra are convex.
Exercise 5. Prove that polyhedra are spectrahedra.

Exercise 6. Describe geometrically the following spectrahedra in R?:

a) S:{(x,y)€R2: (Hw Y )to},

Y 1—2
142z
1—-2z
— 2.
b) S=<(z,y) e R*: 14y =0/,
L—y
1 =z y
c) S=<X(r,y) eR?: |z 1 x| =0
y = 1
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