Lecture 16

1. Review of Linear Algebra

Recall that $\lambda \in \mathbb{R}$ is an eigenvalue for an $n \times n$ matrix A if the linear equation $A x=\lambda x$ has a nontrivial solution $x \neq 0$. In other words, the kernel (or nullspace) of $\lambda \mathrm{Id}-A$ is nontrivial; so, equivalently, the eigenvalues of A are the roots of the characteristic polynomial $p(\lambda)=\operatorname{det}(\lambda \operatorname{Id}-A)$, which is a monic polynomial of degree n in λ.

If λ is an eigenvalue of A, the elements of $\operatorname{ker}(\lambda \operatorname{Id}-A)$ are called the eigenvectors of A associated to the eigenvalue λ, and the linear subspace $\operatorname{ker}(\lambda \operatorname{Id}-A)$ is called the eigenspace of A associated to the eigenvalue λ.
Exercise 1. Find all eigenvalues of the following matrices; for each eigenvalue, find a basis of the corresponding eigenspace.
a) $A=\left(\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right)$
b) $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & 4\end{array}\right)$
c) $A=\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$

The collection of all eigenvalues of the matrix A is called its spectrum, and we denote it by $\operatorname{Spec}(A)=\left\{\lambda_{i} \in \mathbb{R}: \lambda_{i}\right.$ is an eigenvalue of $\left.A\right\}$. The matrix A is diagonalizable if there is a decomposition $\mathbb{R}^{n}=\bigoplus_{\lambda_{i} \in \operatorname{Spec}(A)} \operatorname{ker}\left(\lambda_{i} \operatorname{Id}-A\right)$ into eigenspaces associated to eigenvalues of A. Equivalently, A is diagonalizable if there exists an invertible matrix P such that $A=P D P^{-1}$, where $D=\operatorname{diag}\left(\lambda_{i}\right)$ is a diagonal matrix (in this case, the columns of P are the coordinates of eigenvectors of A). Which of the matrices above are diagonalizable, and with which P ?

Note that the behavior of A as a map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is geometrically clear in each eigenspace (it is simply multiplication by λ_{i}) so if A is diagonalizable, then we can find out what A does to any vector in \mathbb{R}^{n} by decomposing it into the components in each eigenspace of A. In other words, if we "change basis" using P and work on a basis of eigenvectors of A, then A operates as the diagonal matrix $D=\operatorname{diag}\left(\lambda_{i}\right)$. This is illustrated in the diagram below:

We will make frequent use of the following important algebraic results.
Theorem 1. If A is symmetric, that is, $A^{T}=A$, then A is orthogonally diagonalizable, that is, there exists a matrix P such that $P^{T} P=\operatorname{Id}$ and $A=P D P^{-1}=P D P^{T}$, where D is diagonal.
Theorem 2. The characteristic polynomial $p(\lambda)$ of an $n \times n$ matrix A satisfies

$$
p(\lambda)=\operatorname{det}(\lambda \operatorname{Id}-A)=\sum_{k=0}^{n}(-1)^{k} \operatorname{tr}\left(\wedge^{k} A\right) \lambda^{n-k}
$$

where $\operatorname{tr}\left(\wedge^{k} A\right)$ is the sum of all principal minor $\rrbracket^{円}$ of A of size k.

[^0]
[^0]: ${ }^{1}$ Recall that a principal minor of A of size k is the determinant of a submatrix of A obtained by selecting rows $\left\{i_{1}, \ldots, i_{k}\right\}$ and columns $\left\{i_{1}, \ldots, i_{k}\right\}$.

