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Lecture 14

1. Duality

1.1. Estimating the optimal value. Suppose we are given the following LP1

(1)

max 2x1 + 3x2 s.t. 4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

x1, x2 ≥ 0.

Solving it, e.g., via the simplex method, we find the optimal value is 19
4 , attained at x1 = 1

2 , x2 = 5
4 .

However, suppose we did not have time (or were not interested enough) to solve this LP exactly,
and just wanted an upper bound for the solution. For example, from the first constraint, we get

2x1 + 3x2 ≤ 4x1 + 8x2 ≤ 12,

and, indeed, 19
4 < 12. A better (smaller) upper bound is found dividing the first constraint by 2.

Exercise 1. Add the first two constraints and divide by 3 to obtain an even better upper bound
for the optimal value of the above LP. How large can it be? Can you improve that bound further?

Solution to Exercise 1. Adding the first two constraints and dividing by 3 we find

2x1 + 3x2 = 1
3(4x1 + 8x2) + 1

3(2x1 + x2) ≤ 5,

so we have that 5 is an upper bound. More generally, taking linear combinations of the 3 constraints,
namely, multiplying them by y1, y2, y3, respectively, and adding the results, we have

(4y1 + 2y2 + 3y3)x1 + (8y1 + y2 + 2y3)x2 ≤ 12y1 + 3y2 + 4y3.

Since all variables are nonnegative, the above is useful to find upper bounds for the optimal solution
of the LP (1) if and only if the coefficients of x1 and of x2 are at least 2 and 3, respectively.

Thus, the optimal choice of y1, y2, y3, i.e., the one that finds the smallest possible upper bound,
is the solution to the LP

(2)

min 12y1 + 3y2 + 4y3 s.t. 4y1 + 2y2 + 3y3 ≥ 2,

8y1 + y2 + 2y3 ≥ 3,

y1, y2, y3 ≥ 0.

The optimal solution to this LP is 19
4 , attained at y1 = 5

16 , y2 = 0, y3 = 1
4 . Does 19

4 look familiar?
The LP (2) is called the dual of the primal LP (1).

More generally, the dual LP to the primal

(3) max cTx s.t. Ax ≤ b, x ≥ 0,

is given by

(4) min bT y s.t. AT y ≥ c, y ≥ 0.

Exercise 2. Find the dual LP to

max 34x1 + 31x2 s.t. 5x1 + 2x2 ≤ 16

3x1 + 7x2 ≤ 27

x1, x2 ≥ 0.

Solve both primal and dual LP.

1This example is from Sec. 6.1 in “Understanding and Using Linear Programming”, by Jiri Matousek and Bernd
Gärtner (Springer).



Solution to Exercise 2. The dual LP is
min 16y1 + 27y2 s.t. 5y1 + 3y2 ≥ 34

2y1 + 7y2 ≥ 31

y1, y2 ≥ 0.

The optimal solution to the primal LP is x1 = 2, x2 = 3, where the target function achieves its
maximum 161. The optimal solution to the dual LP is y1 = 5, y2 = 3, where the target function
achieves its minimum 161.

What would happen if we take a dual again?

Proposition 1. The dual of the dual of a LP is the original LP itself.

Exercise 3. Prove Proposition 1, that is, show that the dual of (4) is (3).

Solution to Exercise 3. The LP (4) can be equivalently stated as as

max −bT y s.t. −AT y ≤ −c, y ≥ 0.

Thus, its dual is
min −cTx s.t. − (AT )Tx ≤ −b, x ≥ 0,

which can be equivalently stated as (3).

More generally, using the routine tricks (multiplying both sides by −1 to exchange ≤ and ≥,
writing an unconstrained variable as the difference of nonnegative variables, etc.), we can dualize
any LP. Namely, if the primal LP has target function cT x, x ∈ Rn, constraints given by an m× n
matrix A, and right-hand sides given by a vector b ∈ Rm, then the dual can be obtained as follows:

Primal LP Dual LP
m = # constraints m = # variables (yi)
n = # variables (xj) n = # constraints

max min
≤ bi yi ≥ 0
= bi yi unconstrained

xj ≥ 0 ≥ cj
xj unconstrained = cj

Note that the above table can be read left to right, or right to left, as a consequence of Proposition 1.

Exercise 4. Find the dual LP to
min 3x2 + x3 s.t. x1 + 3x2 ≤ 10

2x1 − x2 + x3 ≥ 5

5x1 − 3x2 + 4x3 = 15

x1 ≥ 0,

x2, x3 unconstrained.

Solution to Exercise 4.
max −10y1 + 5y2 + 15y3 s.t. − y1 + 2y2 + 5y3 ≤ 0

−3y1 − y2 − 3y3 = 3

y2 + 4y3 = 1

y1 ≥ 0, y2 ≥ 0

y3 unconstrained.
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Finally, let us address what we saw empirically in the beginning of the lecture:

Proposition 2 (Weak Duality). If x and y are feasible solutions to (3) and (4), respectively, then
cT x ≤ bT y.

Proof. Since AT y ≥ c, we have that cT ≤ (AT y)T = yTA. Taking the inner product on both sides
with x ≥ 0, it follows that cTx ≤ yTAx. Similarly, taking the inner product of Ax ≤ b and y ≥ 0,
we find yTAx ≤ yT b. Concatenating these inequalities, we obtain cT x ≤ yTAx ≤ yT b = bT y. �

In fact, much more can be said about solving a pair of dual LPs:

Theorem 1 (Strong Duality). For the LPs (3) and (4), exactly one of the following holds:

(i) Neither (3) nor (4) has a feasible solution;
(ii) (3) is unbounded and (4) has no feasible solution;

(iii) (3) has no feasible solution and (4) is unbounded;
(iv) Both (3) and (4) have feasible solutions, say x∗ and y∗. In this case, the optimal values are

equal, that is, cTx∗ = bT y∗.

A proof of the above result (using the simplex method!) can be found in the suggested textbooks.
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