Independent Events
Def: E and F are independent events if

$$
P(E F)=P(E) \cdot P(F)
$$

Note: If E and F are index.:

$$
\begin{aligned}
& P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{P(E) \cdot P(F)}{P(F)}=P(E) \\
& P(F \mid E)=P(F) .
\end{aligned}
$$

Examples:
(1) A card is selected at random $\left(\begin{array}{cc}52 & \text { cords } \\ \text { in } & a \\ \text { deck }\end{array}\right)$
$E=$ cord is an Ace
$F=$ card is of hearts

$$
\begin{array}{ll}
P(E)=\frac{4}{52}=\frac{1}{13}, P(F)=\frac{13}{52}=\frac{1}{4}, \quad P(\underbrace{52}_{\substack{\pi \\
\text { The the of } \\
\text { hearts }}}=\frac{1}{5} \\
P(E) \cdot P(F)=\frac{1}{13} \cdot \frac{1}{4}=\frac{1}{52}=P(E F) &
\end{array}
$$

$\Rightarrow E$ and F are independent.
(2) Toss 2 fair dice

$$
\begin{aligned}
& \text { Toss } 2 \text { four dice } \\
& E=\text { sum is } 6 \\
& F=\text { forst is } 4
\end{aligned} \sim\left[\begin{array}{l}
\vec{E}=\text { sum is } 7 \\
\left(\begin{array}{ll}
\text { Ans.: } & E \text { and } F \text { are } \\
\text { independent. }
\end{array}\right)
\end{array}\right]
$$

Exercise: what about

$$
\begin{array}{ll}
P(E)=\frac{5}{36}, & P(F)=\frac{1}{6}, \\
{\left[\begin{array}{ll}
1+5=6 \\
2+4=6
\end{array}\right.} & P(E) \cdot P(F)=\frac{5}{36} \cdot \frac{1}{6}=\frac{5}{216} \neq \frac{1}{36}=P(E F)
\end{array}
$$

(5)
$4+2=6$
$5+1=6$
$\Rightarrow E$ and F are not independent.

$$
6 \cdot 6=36
$$

Prop: If E and F are independent, then so are E and F^{C}.
Pf: By def., E and F are indep. if

$$
P(E) \cdot P(F)=P(E F) .
$$

want to show:

$$
P(E) \cdot P\left(F^{c}\right)=P\left(E F^{c}\right)
$$

$$
\begin{aligned}
& E=E F U E F^{c} \\
& P(E)=P(E F)+P\left(E F^{c}\right) \\
&=P(E) \cdot P(F)+P\left(E F^{c}\right) \\
& \Rightarrow \quad P(E)-P(E) \cdot P(F)=P\left(E F^{c}\right) \\
& P(E)(\underbrace{1-P(F)}_{P\left(F^{c}\right)})=P\left(E F^{c}\right) \\
& P(E) \cdot P\left(F^{c}\right)=P\left(E F^{c}\right) .
\end{aligned}
$$

$\frac{\text { However: If }}{E}\left\{\begin{array}{l}E \text { and } F \text { are independent } \\ E \text { and } G \text { are independent }\end{array}\right.$ is it true that E and $F G$ are independent?

NO: Here is a counter-exaple
Toss 2 dice.

$$
\begin{aligned}
& E=\text { sum is } 7 \\
& F=\text { first is } 3 \\
& G=\text { second is } 4
\end{aligned}
$$

E and F are indef. E and G are index.
E and $F G$ are not indy:

$$
P(E \mid F G)=1>P(E)
$$

What does it mean for $E_{1} F, G$ to be independent?
Def: E, F, G are indef. if

$$
\begin{aligned}
P(E F G) & =P(E) \cdot P(F) \cdot P(G) \\
P(E F) & =P(E) \cdot P(F) \\
P(E G) & =P(E) \cdot P(G) \\
P(F G) & =P(F) \cdot P(G) .
\end{aligned} \quad \begin{array}{r}
\text { need to hove } \\
\text { nell of these. }
\end{array}
$$

What dost for collections of more than 3 event??
Def: $\left\{E_{i}\right\}$ are independent if for all subsets

$$
\left\{E_{i_{1}}, E_{i_{2}}, \ldots E_{i_{r}}\right\}_{\text {for any } r}, \quad P\left(E_{i_{1}} E_{i_{2}} \cdots E_{i_{r}}\right)=P\left(E_{i_{1}}\right) \cdot P\left(E_{i_{2}}\right) \cdots P\left(E_{i_{r}}\right) .
$$

Def: $\left\{E_{i}\left\{\right.\right.$ are called trials if $\left\{E_{i}\right\}$ are independent, and have the same possible outcomes
"E $E_{i}=$ outcome of $i^{\text {th }}$ repetition of a given experiment".

Bernoulli process
Suppose an infinite sequence of (independent) tads is conducted, and the outcome is either a success (S) or a failure (F).

$$
\text { SSFSSSFFSFFSS.... } \quad\left[\begin{array}{l}
\text { Prob. of Sucuas }=p \\
\text { Prob. of Failure }=1-p .
\end{array}\right.
$$

a) What is the prodactility of at least 1 success in the first a triads?

$$
P\left(\begin{array}{cc}
A+ \\
1 & S
\end{array}\right)=1-P\left(\begin{array}{cc}
N_{0} & S \\
\text { at all }
\end{array}\right)=1-(1-p)^{n}
$$

b) What is the prodocaility of exactly K successes in the frost n trials?

$$
\underbrace{S S S \ldots S}_{k} \underbrace{F F \ldots F}_{n-k}
$$

$$
\binom{n}{k} p^{k} \cdot(1-p)^{n-k}
$$

c) What is the probability that the fuss n trials are a success? what hoppers as $n \lambda+\infty$?

$$
\begin{aligned}
& \underbrace{S \ldots S}_{n} \quad \lim _{n^{\prime} \rightarrow+\infty} p^{n}= \begin{cases}0, & 0 \leq p<1 \\
1, & p=1\end{cases} \\
& \underbrace{F \ldots F}_{n} \lim _{n \lambda+\infty}(1-p)^{n}= \begin{cases}0 & , 0 \leq 1-p<1(1 \geq p>0) \\
1 & 1-p=1 \quad(p=0)\end{cases}
\end{aligned}
$$

Ex: Rolling a pair of dice infinitely mary times. What is the prob. that a sum of 5 occurs before a sum of 7?
$E_{n}=\left(\begin{array}{ccccc}n o & 5 & \text { or } 7 \text { occurs in the first } n-1 \text { trios } \\ \text { and } 5 & 5 \text { occurs precisely on the } n^{\text {th }} \text { trio. }\end{array}\right)$
"you have nat won/loss until
$n^{\text {th }}$ trial, and you win on the $n^{\text {th }}$ trial"
Desired

${ }^{4}$
"prob. that at least $=$?

1 of them must happen

$$
\begin{aligned}
& P(5)=4 / 36 \quad P\left(5^{c} \cap 7^{c}\right)=P\left((507)^{c}\right)=1-P(507) \\
& P(7)=6 / 36 \\
& P\left(E_{n}\right)=\underbrace{\frac{4}{36}}_{\uparrow} \cdot \underbrace{\left(1-\frac{10}{36}\right)^{n-1}}_{\uparrow \text { occurs th no } 5 \text { nor } 7} \\
& =1-(P(5)+P(7)) \\
& =1-\frac{4+6}{36}=1-\frac{10}{36} \text {. } \\
& \text { on the } n^{\text {th }} \\
& \text { trial } \\
& \text { on trials } \\
& 1, \ldots, n-1
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=1}^{+\infty} \frac{4}{36}\left(1-\frac{10}{36}\right)^{n-1} & =\frac{1}{9} \sum_{n=1}^{+\infty}\left(\frac{13}{18}\right)^{n-1}=\frac{1}{9} \frac{1}{1-\left(\frac{13}{18}\right)} \\
& =\frac{1}{9} \frac{18}{5}=\frac{2}{5}
\end{aligned}
$$

Note: $\quad P(5)=\frac{4}{36}, \quad P(7)=\frac{6}{36}$
\Rightarrow Odds are $6: 4 \Rightarrow P=\frac{4}{4+6}=\frac{4}{10}=40 \% \%$
In general, if E and F are mutudly exclusive, (ce. disjoint) (indef.) trials, the probability that E occurs before F is

$$
\frac{P(E)}{P(E)+P(F)}
$$

Ex; The probability of some category 5 hurricane hitting NYC any given year is 10% (assume this prob is constant, despite the fact that, due to climate charge, it is actually increasing with tome!)
Bernoulli process
$S=$ cat 5 hurricane occurs in given yr

$$
F=--
$$ does not occur ingubinger $\quad 1-p=9 / 10$

a) What is the pard. Hat no cat. 5 hurricanes hit NYC for 15 straight years?

$$
(1-p)^{15}=\left(\frac{q}{10}\right)^{15} \cong 20.59 y
$$

b) What is the prob. Heat cat. 5 hurricanes hit NYC in exactly 3 years between $\frac{2021 \text { and } 2031 \text { ? }}{10 \text { years. }}$

$$
p\left(\begin{array}{cc}
3 & \text { s. } \\
\text { in } 10 \text { yrs }
\end{array}\right)=\binom{10}{3} \cdot p^{3}(1-p)^{7}=\binom{10}{3} \frac{1}{10^{3}} \frac{9^{7}}{10^{7}}=\binom{10}{3} \frac{9^{7}}{10^{10}} \cong 5,74 \%
$$

c) What is the prods. that cat. 5 hurricane hit NYC in at most 2 years between $\underbrace{2021 \text { and } 2031 \text { ? }}_{10 \text { years. }}$
Cat. 5
hurricane in
$0 \mathrm{yr} \longrightarrow(1-p)^{10}=\left(\frac{9}{10}\right)^{10}=\frac{9^{10}}{10^{10}}$
$1 y^{r} \rightarrow\binom{10}{1} p(1-p)^{9}=10 \cdot \frac{1}{10} \cdot\left(\frac{9}{10}\right)^{9}=\frac{q^{9}}{10^{9}}$
$2 \mathrm{j}^{r s} \rightarrow\binom{10}{2} p^{2}(1-p)^{8}=\binom{10}{2} \frac{1}{10^{2}} \frac{q^{8}}{10^{8}}=\binom{10}{2} \frac{9^{8}}{10^{10}}$

$$
P=\frac{9^{10}}{10^{10}}+\frac{9^{9}}{10^{9}}+\binom{10}{2} \frac{9^{8}}{10^{10}} \stackrel{\sim 92.98 \%}{=}
$$

