MAT330/681

Lecture 7

Independent Events

$$\underline{Def}: E$$
 and F are independent events if
 $P(EF) = P(E) \cdot P(F)$.

Note: If E and F are indep.:

$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{P(E) \cdot P(F)}{P(F)} = P(E)$$

 $P(F|E) = P(F).$

$$E \times a_{inverted} = E \times a_{inve$$

$$P(E) = \frac{5}{36}, \quad P(F) = \frac{1}{6}, \quad P(EF) = \frac{1}{36}$$

$$I + 5 = 6 \qquad P(E) \cdot P(F) = \frac{5}{36}, \quad \frac{1}{6} = \frac{5}{216} \neq \frac{1}{36} = P(EF)$$

$$2 + 4 = 6 \qquad P(E) \cdot P(F) = \frac{5}{36}, \quad \frac{1}{6} = \frac{5}{216} \neq \frac{1}{36} = P(EF)$$

$$P(E) = P(E) \qquad P(F) = P(EF), \qquad P(E) = P(EF), \qquad P(E) \cdot P(F) = P(EF)$$

$$P(E) - P(E) = P(EF) + P(EF^{c}) = P(EF) + P(EF^{c}) = P(E) + P(E)$$

M): Here is a counter example
Toss 2 dice,

$$E = sum is 7$$
 E and F are indep.
 $F = first is 3$ E and G are indep.
 $G = second is 4$
 E and FG are not indep.
 $G = second is 4$
 E and FG are not indep.
 $P(E|FG) = 1 > P(E)$
What does it mean for E_1F, G to be independent?
 $Def: E_1F, G$ are indep. if
 $P(EFG) = P(E) \cdot P(F)$ need to have
 $P(EF) = P(E) \cdot P(F)$
 $P(EG) = P(E) \cdot P(G)$
 $P(FG) = P(E) \cdot P(G)$
 $P(FG) = P(E) \cdot P(G)$
 $P(FG) = P(F) \cdot P(G)$
 $P(FG) = P(F) \cdot P(G)$
 $P(E_1 = independent if for all subsets$
 $\frac{1}{2Eiz}, Eiz, --Eir \}, P(EizEiz - Eir) = P(Eiz) \cdot P(Eir)$.
 $\frac{1}{2}er ary r$
 $Def: {Ei}$ are called trials if $\frac{1}{2}Eiz$ are independent,
and have the same possible outcomes
 $^{"}E_i = outcome of ith repetition of a given experiment".$

Bernaulli process
Suppose an infunte sequence of (independent) truts is conducted,
and the outcome is wither a success (S) or a failure (F).
SSFSSFFSFFSFFSS---- [Prob of Success = t
Prob. of Failure = 1-p.
a) whet is the probability of at deast 1 success in the first
on truts?

$$P(At least) = 1 - P(No S) = 1 - (1-p)$$

b) what is the probability of exactly K successes in the first
n trubs?
 $SSS \dots S FF \dots F$
 $K n-K$
 $(N) K (1-p)$
 $(N) K (1-p)$
 $(N) N hot is the probability that the first n trubs are a
 $Success ? nitest happens as $n = t + os$?
 $Success ? nitest happens as $n = t + os$?
 $S \dots S \dots S FF \dots F$
 $(1-p) = \{0, 0 \le p \le 1$
 $n = 1$
 $F \dots F = \lim_{n \to +\infty} (1-p) = \{0, 0 \le p \le 1$
 $n = 1$
 $F \dots F = \lim_{n \to +\infty} (1-p) = \{0, 0 \le p \le 1$
 $n = 1$
 $F \dots F = \lim_{n \to +\infty} (1-p) = \{0, 0 \le 1-p \le 1(5p > 0)$
 $n = 1$
 $(1-p) = \{0, 0 \le 1-p \le 1(5p > 0)$
 $n = 1$
 $(1-p) = \{0, 0 \le 1-p \le 1(5p > 0)$
 $(1-p) = 1$
 $(1-p) = (p = 0)$$$$

EX: Robling a pour of drive infuncted many times.
Whet is the pool. that a sum of 5 occurs
before a sum of 7?

$$E_{N} = \begin{pmatrix} \text{Mor S or 7 occurs in the first N-1 trick} \\ \text{and S occurs preasely on the nth trick.} \end{pmatrix}$$

$$E_{N} = \begin{pmatrix} \text{Mor S or 7 occurs in the first N-1 trick} \\ \text{and S occurs preasely on the nth trick.} \end{pmatrix}$$

$$\frac{1}{2} \int_{1}^{1} \int_{$$

$$\sum_{n=1}^{+\infty} \frac{4}{36} \left(1 - \frac{10}{36} \right)^n = \frac{1}{9} \sum_{n=1}^{+\infty} \left(\frac{1^3}{18} \right)^{n-1} = \frac{1}{9} \frac{1}{1 - \left(\frac{1^3}{18} \right)}$$
$$= \frac{1}{9} \frac{18}{5} = \frac{2}{5} \frac{40}{5}$$

<u>Note</u>: $P(5) = \frac{4}{36}$, $P(7) = \frac{6}{36}$

 \Rightarrow Odds are 6:4 => P = $\frac{4}{4+6} = \frac{4}{10} = 407$.

In general, if
$$E$$
 and F are mutually exclusive, performing
(indep.) trials, the probability that E occurs before F is
$$\frac{P(E)}{P(E) + P(F)}$$

Ex: The probability of some cotegory 5 hurricane hitting
NYC any given year is 10%. (assume this prob
is constant, deepite the fact that, due to climate charge,
it is actually increasing with townel)
Bernsulli processo

$$S = \text{out } 5$$
 hurricone occurs in pownyr $p = 4/10$
 $F = --$ does not occur in pownyr $1-p = 9/10$
c) What is the prob. that are calls hurricones hit NYC
for 15 straight years?
 $(1-p)^{45} = (\frac{9}{10})^{15} \cong 20.59 \text{ Y}.$
b) What is the prob. that are calls hurricones hit NYC
in exactly 3 years between 2021 and 2031?
 $P(\frac{3}{10}, \frac{5}{10}) = (\frac{40}{3}) \cdot p^3 (1-p)^7 = (\frac{40}{3}) \frac{9^7}{10^3} = (\frac{40}{3}) \frac{9^7}{10^6} \cong .74\%.$
c) what is the prob. that calls hurricones hit NYC
in exactly 3 years between 2021 and 2031?
 $P(\frac{3}{10}, \frac{5}{10}, \frac{10}{2}) = (\frac{40}{3}) \cdot p^3 (1-p)^7 = (\frac{40}{3}) \frac{9^7}{10^3} = (\frac{40}{3}) \frac{9^7}{10^6} \cong .74\%.$
c) what is the prob. that calls hurricones hit NYC
in at most 2 years between $dial$ and $dial$?
 $P(\frac{1}{10}, \frac{1}{10}, \frac{9^7}{10^7} = (\frac{1}{10}) \frac{1}{10^3} \frac{9^7}{10^7} = (\frac{1}{10}) \frac{9^7}{10^6} = \frac{9^{10}}{10^7}$
 $P(\frac{1}{10}, p(1-p)^9 = 10, \frac{1}{10}, (\frac{9}{10})^9 = \frac{9^7}{10^7}$
 $2 \text{ yrs } -9(\frac{10}{2}) p^2(1-p)^8 = (\frac{10}{2}) \frac{1}{10^8} = (\frac{9^8}{10^8} = (\frac{10}{2}) \frac{9^8}{10^7}$

.

$$P = \frac{q^{10}}{10^{10}} + \frac{q^{9}}{10^{9}} + \binom{10}{2} \frac{q^{8}}{10^{40}} = \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{q^{8}}{10^{10}}$$