Bayes' formula
Recall from last class $P(E \mid F)=\frac{P(E F)}{P(F)} \quad(P(F)>0)$

Note: $P(E F)=P(E \mid F) \cdot P(F)$

$$
P(E) \stackrel{E}{=} P\left(E F^{c}\right)+P(E F) \text { disjoint union. }
$$

$$
P(E)=P\left(E \mid F^{c}\right) \cdot P\left(F^{c}\right)+P(E \mid F) \cdot P(F)
$$

Bayes' Formula:

$$
P(H \mid E)=\frac{P(E H)}{P(E)}=\frac{P(E \mid H) \cdot P(H)}{P(E \mid H) \cdot P(H)+P\left(E \mid H^{C}\right) \cdot P\left(H^{C}\right)}
$$

Ex: An insurance compony designates people as "acci dent-prone" or not. Someone that is accident-prone has 40% chance of having an accident in the $1^{\text {st }}$ yer of a policy, while someone who is not accident-prove hos only half that chance.
Q1: If 30% of the population is accident-prone, what is the chance of a new policy holder having an accident in their first year?
$A=$ being accident-prone
$A_{1}=$ having an accident in the $1^{s t} y r$.

Given: $\quad P(A)=0.3 \quad P\left(A^{c}\right)=0.7$

$$
\begin{array}{ll}
P\left(A_{1} \mid A\right)=0.4 & P\left(A_{1}^{c} \mid A\right)=0.6 \\
P\left(A_{1} \mid A^{c}\right)=0.2 & P\left(A_{1}^{c} \mid A^{c}\right)=0.8
\end{array}
$$

Went: $P\left(A_{1}\right)=$?

$$
P\left(A_{1}\right)=\underbrace{P\left(A_{1} \mid A\right)}_{0.4} \underbrace{P(A)}_{0.3}+\underbrace{P\left(A_{1} \mid A^{C}\right)}_{0.2} \cdot \underbrace{P\left(A^{C}\right)}_{0.7}=0.12+0.14=0.26
$$

Q2: If a new policy holder had an accident in their first year, what is the prob. that they are accident-parne?

$$
\begin{aligned}
P\left(A \mid A_{1}\right)=\frac{P\left(A A_{1}\right)}{P\left(A_{1}\right)}=\frac{P\left(A_{1} \mid A\right) \cdot P(A)}{P\left(A_{1}\right)} & =\frac{0.4 \cdot 0.3}{0.26}=\frac{6}{13} \\
& =46.15 \%
\end{aligned}
$$

Ex. Suppose that a multiple choice question in a Final Exam has 5 alternatives, and only 1 is correct. The probability that a student knows the answer to that question is pi and if the student doesn't know it, they guess the answer at randoms.
a) What is the prob. That the student knew the answer given that they got the correct answer?
$K=$ Knowing the answer
$C=$ getting the correct answer.

$$
\begin{aligned}
& C=\text { getting the correct answer. } \\
& \begin{aligned}
P(k \mid C) & =\frac{\overbrace{P(K C)}^{P(K)} \cdot \overbrace{P(K)}^{P(k)}}{P(C)}=\frac{\underbrace{P(C \mid K)}_{1} \underbrace{P(k)}_{p}+\underbrace{P\left(c \mid k^{c}\right)}_{1 / 5} \cdot \underbrace{P\left(k^{c}\right)}_{(1-p)}}{p+\frac{5 p}{5(1-p)}}=\frac{5 p}{5 p+1-p}=\frac{5 p+1}{4 p}
\end{aligned}
\end{aligned}
$$

b) What is the prob. That the student got the correct answer and did not knew the correct answer?

$$
P\left(C K^{c}\right)=\underbrace{P\left(C \mid K^{c}\right)}_{1 / 5} \underbrace{P\left(K^{c}\right)}_{1-p}=\frac{1-P}{5}
$$

E.g., if $p=\frac{1}{2}$:
a) $\frac{5 p}{4 p+1}=\frac{5 / 2}{3}=\frac{5}{6}=83.33 \%$
b) $\frac{1-p}{5}=\frac{1}{10}=10 \%$

Curiosity:

$$
P\left(K^{c} \mid c\right)=1-P(K \mid c)=1-\frac{5 p}{4 p+1}
$$ = "prob. you hod to guess, given that you got the correct answer".

Upshot: Unless $p=1$ (you knew everything), as $n \Upsilon+\infty$, the prob. Yow had to guess at least 1 answer given that you got a perfect score gas to 100%.

Monty Hall problem

$$
H=\binom{\text { car is behind }}{\text { door \#1 }} \quad \text { "hypothesis" } \quad P(H)=\frac{1}{3}, P\left(H^{c}\right)=\frac{2}{3}
$$

$E=\binom{$ host opens a door }{$w /$ a goat and nocor } "evidence"

$$
\underbrace{P(H \mid E)}_{\begin{array}{l}
\text { prob, of } \\
\text { success if } \\
\text { we don't switch }
\end{array}}=\frac{P(H E)}{P(E)}=\frac{\overbrace{1}^{P(E \mid H)} \cdot(\underbrace{P(H))}_{1}=\frac{1}{3}}{\underbrace{P(E \mid H)}_{\frac{1}{3}} \cdot \underbrace{P(H)}_{1}+\underbrace{P\left(H^{c}\right)}_{\frac{1}{P\left(E \mid H^{c}\right)}})}=\underbrace{\frac{1}{3}}_{\frac{2}{3}} \frac{\frac{1}{3}}{\frac{1}{3}+\frac{2}{3}}=\frac{1}{3}
$$

$$
P\left(H^{c} \mid E\right)=1-P(H \mid E)=1-\frac{1}{3}=\frac{2}{3}
$$ if we switch.

False Positives

- The probability of having diabetes is $1 \% \leadsto P(D)=0.01$
- If someone has diabetes, there is a 90% prob. they test positive $\leadsto P(E \mid D)=0.9$
- If someone does not have diabetes, the prob. they never the less test positive is 9% "false positives"
- Someone teats positive. What is the prob. $P\left(E \mid D^{c}\right)=0.09$ they have diabetes? $P(D \mid E)=$?

Most frequent answer among M.D.'s: $80 \%-90 \%$

$$
D=\text { disease }
$$

$E=$ evidence of the disease (positive test)

$$
\begin{aligned}
& \text { true positives } \\
& P(D)=0.01 \quad P(E \mid D) \stackrel{D}{=} 0.9 \quad P(E \mid D C)=0.09 \\
& P\left(D^{c}\right)=0.99 \quad P\left(E^{C} \mid D\right)=0.1 \quad P\left(E^{c} \mid D^{c}\right)=0.91 \\
& P(D \mid E)=\frac{P(D E)}{P(E)}=\frac{P(E(D) \cdot P(D)}{P(E \mid D) P(D)+P\left(E \mid D^{C}\right) \cdot P\left(D^{C}\right)} \\
& =\frac{0.9 \cdot 0.01}{0.9 \cdot 0.01+0.09 \cdot 0.99} \\
& =9.17 \% \quad\binom{\text { e } 10.11 \% \text { in }}{\text { Lector } 1}
\end{aligned}
$$

Q: Why so low?
Tests for a disease are not frequently given to people who don't show any signs/syanptoms of that disease. In mathematical terms, this is the difference in prevalence of disease between people who are given tests v. the general population.
Q: How to improve the rets?

- Reduce false positives $\left(P\left(E \mid D^{C}\right)\right.$ as small passible).
- Keep in mind that designing texts for very mare conditions (very small $P(D)$) is much harder.

