Conditional Probability

$$
\left.\begin{array}{l}
R=\text { red light blinks } \\
G=\text { green light blinks } \\
B=\text { blue light blinks }
\end{array}\right\} \text { disjoint }
$$

$$
P(R)=\frac{1}{5}
$$

$$
P(G)=\frac{2}{5}
$$

- What are the "new" probabilities \widetilde{P} for the events R and G, given that B does not happen?

$$
\begin{cases}\stackrel{P}{P}(R)+\vec{P}(G)=1 & \widetilde{P}(R)=\frac{1}{3} \\ \vec{P}(G)=2 \cdot \stackrel{\rightharpoonup}{P}(R) & \vec{P}(G)=\frac{2}{3}\end{cases}
$$

- Let us analyze this "distributing" the old probability of B happening to new probabilitios.

Information: B does not happen
B^{c} happens.

$$
P\left(B^{C}\right)=1-P(B)=1-\frac{2}{5}=\frac{3}{5} .
$$

$$
\begin{aligned}
& \text { Since original events are disjoint: } \\
& P\left(R \cap B^{C}\right)=P(R) \\
& P\left(G \cap B^{C}\right)=P(G) \\
& \tilde{P}(R)=\frac{P\left(R \cap B^{c}\right)}{P\left(B^{c}\right)}=\frac{P(R)}{P\left(B^{c}\right)}=\frac{1 / 5}{3 / 5}=\frac{1}{3} \\
& \widetilde{P}(G)=\frac{P\left(G \wedge B^{c}\right)}{P(G)}=\frac{P(G)}{P\left(B^{c}\right)}=\frac{2 / 5}{3 / 5}=\frac{2}{3}
\end{aligned}
$$

Def: The conditional probability that an event E happens given that the event F happens is

$$
P\left(\left.E\right|_{\uparrow}\right)=\frac{P(E F)}{P(F)} \quad \text { (assoning } P(F)>0 \text {). }
$$

"given that"

Compare w/ example above: $\quad \tilde{P}(E)=P\left(E \mid B^{c}\right)$
Frets about conditional probabilities
(1) If $P: P(\Omega) \rightarrow[0,1]$ is a probability and $F \in P(\Omega)$ is such that $P(F)>0$, then $\widetilde{P}: P(\Omega) \rightarrow[0,1]$ given by

$$
\stackrel{\rightharpoonup}{P}(E):=P(E \mid F)=\frac{P(E F)}{P(F)}
$$

is a probability on Ω :

- $\tilde{P}(E)=P(E \mid F) \in[0,1]$
- $\tilde{P}(\Omega)=P(\Omega \mid F)=1$
- If E_{i} are pairwise disjoint, ce., $E_{i} \cap E_{j}=\phi$ if if, then $\vec{P}\left(\bigcup_{i=1}^{n} E_{i}\right)=P\left(\bigcup_{i=1}^{n} E_{i} \mid F\right)=\sum_{i=1}^{n} \underbrace{P\left(E_{i} \mid F\right)}_{\widetilde{(E)}}$
So all previas resets apply to conc. $\underset{\sim}{D}(E$ for example, $P\left(E^{c} \mid F\right)=1-P(E \mid F)$
(2) In particular, if Ω is finite and all artcomes are equally likely, then

$$
P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{|E \cap F|}{|F|}
$$

Proof: $\quad P(E F)=\frac{|E \cap F|}{|\Omega|} \quad P(F)=\frac{|F|}{|\Omega|}$

$$
P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{|E \cap F| /|\Omega|}{|F| /|\Omega|}=\frac{|E \cap F|}{|F|}
$$

(here $\Omega=S$ is the sample spence)
Example: Two four coins are tossed. What is the prob. of both larding on hoods given that
a) the first coin lands on heads.
b) at least one coin lands on heads.
$\Omega=\{(T, T),(T, H),(H, T),(H, H)\} \quad$ sample space.
a)

$$
\begin{aligned}
& E=\{(H, H)\} \\
& F=\{(H, T),(H, H)\} \quad \text { "fist coin lands on } \\
& \text { heads" }
\end{aligned}
$$

b)

$$
\begin{aligned}
& E=\{(H, H)\} \\
& G=\{(H, T),(T, H),(H, H)\} . \quad \text { "at leas one } \\
& \text { heads" }
\end{aligned}
$$

$$
P(E \mid G)=\frac{P(E G)}{P(G)}=\frac{|E \cap G|}{|G|}=\frac{1}{3} \mathbb{1} / \mathrm{I}
$$

Prop: (Muetiplication Rule). Suppose E_{1}, \ldots, E_{n} are events st. $P\left(E_{1} \cdots E_{k}\right)>0$ for all $1 \leqslant k \leqslant n$. Then:

$$
P\left(E_{1} E_{2} \ldots E_{n}\right)=P\left(E_{1}\right) \cdot P\left(E_{2} \mid E_{1}\right) \cdot P\left(E_{3} \mid E_{1} E_{2}\right) \ldots P\left(E_{n} \mid E_{1} \ldots E_{n-1}\right)
$$

If: Computing the right -hand side of the above:

$$
\begin{aligned}
& P\left(E_{1}\right) \frac{P\left(E_{1} E_{2}\right)}{P\left(E_{1}\right)} \frac{P\left(E_{1} E_{2} E_{3}\right)}{P\left(E_{1} E_{2}\right)}<\frac{P\left(E_{1} \ldots E_{n-1} E_{n}\right)}{P\left(E_{1} \ldots E_{n-1}\right)} \\
&=P\left(E_{1} \cdots E_{n}\right) . \quad\left(\begin{array}{c}
\text { Can be mote } \\
\text { rigorous using } \\
\text { induction }
\end{array}\right)
\end{aligned}
$$

Ex: A standeral deck with 52 cords is randomly divided into 4 piles (with 13 cords each). What is the pros. that each pile contains exactly 1 ace?
$E_{1}=\{A$ goes to some pile $\}$
$E_{2}=\left\{A_{4}\right.$ and A_{0} go to different piles $\}$
$E_{3}=\left\{A_{1}, A_{1}\right.$, and A_{1} go to different piles $\}$.
$E_{4}=\left\{\right.$ All A_{s}^{\prime} go in different piles $\}$

Question: $P\left(E_{4}\right)=$?

$$
P\left(E_{1}\right)=1
$$

want Nesting: $P\left(E_{4}\right)=P\left(E_{1} E_{2} E_{3} E_{4}\right)$
$\stackrel{\star}{=} P\left(E_{1}\right) \cdot P\left(E_{2} \mid E_{1}\right) \cdot P\left(E_{3} \mid E_{1} E_{2}\right) \cdot P\left(E_{4} \mid E_{1} E_{2} E_{3}\right)$.
Multi. rule
A goes to the some pile os A

$$
\begin{aligned}
& P\left(E_{2} \mid E_{1}\right)=1-P\left(E_{2}^{C} \mid E_{1}\right)=1-\frac{12}{51} \\
& P\left(E_{3} \mid E_{1} E_{2}\right)=1-P\left(E_{3}^{c} \mid E_{1} E_{2}\right)=1-\frac{24}{50} \\
& P\left(E_{4} \mid E_{1} E_{2} E_{3}\right)=1-P\left(E_{4}^{c} \mid E_{1} E_{2} E_{3}\right)=1-\frac{36}{49} \\
& P\left(E_{4}\right)=P\left(E_{1} E_{2} E_{3} E_{4}\right)=1 \cdot\left(1-\frac{12}{51}\right) \cdot\left(1-\frac{24}{50}\right) \cdot\left(1-\frac{36}{49}\right)
\end{aligned}
$$

$$
=\frac{2197}{20825} \cong 10.55 \%
$$

Alternative solution: Distribute 4 aces to the 4 piles that have 13 card each.

$$
P=\frac{\binom{13}{1}\binom{13}{1}\binom{13}{1}\binom{13}{1}}{\binom{52}{4}}=\frac{13^{4}}{\binom{52}{4}}=\frac{2197}{20825}
$$

Ex: You lost your hers and are 80% sore they ore in one of 2 packets in your wat; being 40% sure they are on the Left pocket, and 40% sure than are on the Right pocket. If you look in the left pocket and they ore not there, what is the pub. you find them in the Right?
$L=$ keys are in left pocket
$R=$ keys are in right pocket.

$$
\begin{gathered}
P(L)=P(R)=\frac{40}{100}=\frac{2}{5} \quad P\left(R \mid L^{c}\right)=? \\
P\left(R \mid L^{c}\right)=\frac{P\left(R \cap L^{c}\right)}{P\left(L^{c}\right)}=\frac{P(R)}{1-P(L)}=\frac{2 / 5}{1-2 / 5}=\frac{2}{3} \\
R \cap L^{c}=R \text { b/ } R \cap L=\varnothing .
\end{gathered}
$$

