Lecture 1

- Introduction, Course Syllabus, Q\&A
- Motivating problems

True and False Positives
Version 1:. The probability of having diabetes is 1%

- If someone has diabetes, there is a 90% prob. they test positive
- If someone does not have diabetes, the prob. Huey nevertheless test positive is 9% "false positives"
- Someone teats portive. What is the prob. they have diabetes?
Most frequent answer among M.D.'s: $80 \%-90 \%$.
Version 2: 10 in every 1000 people have diabetes 1\%
- Of these 10, 9 will test positive 90%
- Of the 990 without diabetes, about 89 will never thales filet positive.
- Someone teats positive. What is the probe.

$$
\begin{aligned}
& \text { true thy have diabetes? } \\
& \begin{array}{l}
\text { false } \\
\text { pontives }
\end{array} \frac{9}{89}=10.11 \%<50 \%
\end{aligned}
$$

Bayes' Theorem

Monty Hall Problem/ "Let's make a deal"

$$
\begin{aligned}
& \text { yo r "Stay" } \\
& \begin{array}{|c|c|c|c|c}
\\
1 & 1 & 2 & 3 & \text { reset } \\
\hline & C & G & G_{0} & \text { win } \\
\hline & G & C & G_{0} & \text { dose } \\
\hline & G & G_{0} & C & \text { lose }
\end{array}
\end{aligned}
$$

$\operatorname{\omega in} 1 / 3-2$
F. C. $=$ Find $\begin{gathered}\text { choice. }\end{gathered}$ of the time
\rightarrow Win $2 / 3$ choice. of the time

Basic Counting
Q: Lehman's cafeteria has the following lunch choices

3 options
of sides
:---
of protein
:---
options
of drink

How many possible meals can be chosen?

$$
325=30 \text { meas. }
$$

"Basic Principle of Counting"

License plates: $\underbrace{L, H_{1}^{E}}_{\text {letters }} \underbrace{2,0,2,2}_{\text {numbers }}$
"Experiment "letter: 26 outcomes
"Experiment" digit: 10 outcomes

$$
\text { total }=26^{3} \cdot 10^{4}=175,760,000
$$

Combinations: "In how many ways can you choose k objects from n possible objects, in no particular order?"

If the order matters

$$
\begin{aligned}
& \frac{n}{1^{\text {st }}} \cdot \frac{(n-1)}{2^{n d}} \frac{(n-2)}{3^{r d}} \cdots \frac{(n-(k-1)}{k^{\text {th }} \text { choice }} \\
= & n \cdot(n-1) \cdots(n-k+1)=\frac{n!}{(n-k)!}
\end{aligned}
$$

If the order does not matter: $\frac{n \cdot(n-1) \cdots(n-k+1)}{k!}=\frac{n!}{(n-k)!k!}$ \# of orders in \rightarrow which the choices take ploce

- read this as " n choose k "
$\binom{n}{k}^{\infty}:=\frac{n!}{k!(n-k)!} \quad$ binomial coefficient

$$
\binom{4}{2}=\frac{4!}{2!2!}=\frac{24}{4}=6
$$

Ex: Suppose you hove 10 almonds and 5 cashew muts in a bowl.

In how many ways can you pick them up 1 by 1 to eat?

15 nuts

$$
\begin{aligned}
& \frac{C}{1} \frac{A}{2} \frac{A}{3} \frac{C}{\cdots} \\
& \binom{15}{5}=\frac{A}{15!5!}=\binom{15}{10}
\end{aligned}
$$

