Suppose we have a Bernoulli process, with
(s) $\begin{aligned} & \text { Prob. of } \\ & \text { Success }\end{aligned}=P$
(F)

$$
\begin{aligned}
& \text { Prob. of } \\
& \text { failure }
\end{aligned}=1-p
$$

in each trial.
Q : What is the probability that n successes occur before m failures?
Points problem: Players play a sequence of matches.
Assume player A wins any given match with probe. P. F Player B
Player A : heeds n points to win
Player B: needs m points to win.
Q: what is the prob. Hat Player A wins the game?
A wins $\Longleftrightarrow A$ wins at least n matches in the next $n+m-1$ rounds
(\Longleftarrow) trivial.
(\Longrightarrow) If A wins at most $n-1$ matches in the next $n+m-1$ rounds, than B wins at best m of them. Hence B won and A lost.
Therefore, the probe. that A wins is the same as the prob. that at least m successes occur in the "next" $n+m-1$ trials.
$\left(\begin{array}{l}\text { Prob. exactly } \\ k \\ \text { successes occur } \\ \text { in } \\ n+m-1 \text { trials }\end{array}\right)=\binom{n+m-1}{k} p^{k}(1-p)^{n+m-1-k}$
(Prob. that at least n successes occur in $n+m-1$ tads

$$
\sum_{s=n}^{n+m-1}\left(\begin{array}{c}
\text { prob. exactly } \\
k \text { successeo in } \\
n+m-1 \text { trials }
\end{array}\right)
$$

个 A wins $k=n, n+1, \ldots, n+m-1$
$n+m-1$

$$
=\sum_{k=n}^{n+m-1}\binom{n+m-1}{k} p^{k}(1-p)^{n+m-1-k}
$$

EX: Suppose you are playing rounds of a game in a casino where the house edge is 2Y., that is, your chance of winning any single round is 48%. Before you arrived at the casinos, you mode a deal with yourself that you will stop playing offer either winking or losing 12 rounds. You have already planed 15 rounds, of which you won 9 and bort 6. What is the prob. that when you leave, you would have won 12 rounds?

Player A: you

$$
\begin{array}{ll}
m=3 & p=0.48 \\
m=6 & 1-p=0.52
\end{array}
$$

$$
\begin{array}{r}
P=\sum_{k=n}^{n+m-1}\binom{n+m-1}{k} p^{k}(1-p)^{n+m-1-k}=\sum_{k=3}^{8}\binom{8}{k} 0.48^{k} 0.52^{8-k} \\
=82.76 \%
\end{array}
$$

Gambler's Ruin Problem
Players A and B bet on the outcome of biased coin flaps, and the loser pays the winner $\# 1$. The cain outcomes are:

$$
P(H)=p \quad P\left(H^{c}\right)=q=1-p
$$

and A always bets on H, while B always bets on H^{C}.
Initio wealth: Player A : $\$ i \quad 0 \leq i \leq N$
Player $B: \$(N-i)$
(\#N Total
Q: What is the prob. that A wins (B goes bankrupt)?

$$
P_{i}=\binom{\text { Prob. that } A \text { wins }}{\text { if starting with } i}=P(E)
$$

Condition P_{i} on the first outcome:

$$
P_{i}=P(E)=P(E \mid H) \underbrace{P(H)}_{p}+P\left(E \mid H^{c}\right) \underbrace{P\left(H^{c}\right)}_{q}
$$

$P(E \mid H)=P_{i+1}$: If the first outcome is H, then the wealth of players become:

$$
P\left(E \mid H^{c}\right)=P_{i-1}:
$$

$$
\begin{array}{lr}
A: \$(i+1) & B: \$(N-i-1) \\
& \$(N-(i+1)) \\
\text { Similarly) } & \\
A: \$(i-1) & B: \$(N-i+1) \\
& \$(N-(i-1))
\end{array}
$$

Obtain the recursion:

$$
\begin{gathered}
P_{i}=p \cdot P_{i+1}+q \cdot P_{i-1} \\
P_{0}=0, \quad P_{N}=1
\end{gathered}
$$

$\begin{aligned} & \text { Boundary } \\ & \text { conditions: }\end{aligned} \quad P_{0}=0, \quad P_{N}=1$.
conditions: $\underbrace{(p+q)}_{1} \cdot P_{i}=p^{P_{i+1}}+q P_{i-1}$

$$
\begin{aligned}
& p P_{i}+q P_{i}=p P_{i+1}+q P_{i-1} \\
& P_{i+1}-P_{i}=\frac{q}{p}\left(P_{i}-P_{i-1}\right)
\end{aligned}
$$

$$
i=1, \ldots, N-1
$$

$$
\begin{array}{ll}
i=1: & P_{2}-P_{1}=\frac{q}{p}\left(P_{1}-P_{p}\right)=\frac{q}{p} P_{1} \\
i=2: & P_{3}-P_{2}=\frac{q}{p}\left(P_{2}-P_{1}\right)=\left(\frac{q}{p}\right)^{2} P_{1} \\
i=3: & P_{4}-P_{3}=\frac{q}{p}\left(P_{3}-P_{2}\right)=\left(\frac{q}{p}\right)^{3} P_{1} \\
\vdots & : \quad P_{i}-P_{i-1}=\left(\frac{q}{p}\right)^{i-1} \cdot P_{1} \\
i & : \quad P_{N}-P_{N-1}=\frac{q}{p}\left(P_{N-1}-P_{N-2}\right)=\ldots=\left(\frac{q}{p}\right)^{N-1} \cdot P_{1} .
\end{array}
$$

Adding the first $(i-1)$ equation:

$$
\begin{aligned}
& P_{i}=P_{1}=P_{1}\left(\frac{q}{p}+\left(\frac{q}{p}\right)^{2}+\left(\frac{q}{p}\right)^{3}+\cdots+\left(\frac{q}{p}\right)^{i-1}\right) \\
& P_{i}=P_{1}(\underbrace{\left(\frac{q}{p}\right)^{0}}_{1}+\left(\frac{q}{p}\right)^{1}+\left(\frac{q}{p}\right)^{2}+\left(\frac{q}{p}\right)^{3}+\cdots+\left(\frac{q}{p}\right)^{i-1})
\end{aligned}
$$

paction sum of a geometric series,
of ratio $=q$. of ratio $=\frac{q}{p}$.

$$
P_{i}= \begin{cases}P_{1} \cdot i & \text { if } \frac{q}{p}=1^{\sim}\left(p-q=\frac{1}{2}\right) \\
p_{1} \cdot \frac{1-(q / p)^{i}}{1-(q / p)}, & \text { if } \frac{t}{p} \neq 1 \sim \text { sian } \\
\begin{array}{c}
\text { biased } \\
\text { coin } \\
(p \neq q)
\end{array}\end{cases}
$$

Using that $P_{N}=1$:

$$
1=P_{N}= \begin{cases}P_{1} \cdot N & \text { if } \frac{q}{p}=1 \\ P_{1} \cdot \frac{1-(q / p)^{N}}{1-(q / p)} & \text { if } \frac{q}{p} \neq 1\end{cases}
$$

Solving for $P_{1}:$

$$
P_{1}= \begin{cases}1 / N, & \text { if } \frac{q}{p}=1 \\ \frac{1-q / p}{1-(q / p)^{N}}, & \text { if } \frac{q}{p} \neq 1\end{cases}
$$

Putting everything together:

$$
P_{i}= \begin{cases}\frac{i}{N}, & \text { if } \\ \frac{1-(q / p)^{i}}{1-(q / p)^{N}}, & \text { if } \\ \frac{p \neq \frac{1}{2}}{}\end{cases}
$$

Similarly the prob, that Player B wins: (same initial wealth assumptions)

$$
Q_{i}=\left\{\begin{array}{lll}
\frac{N-i}{N}, & \text { if } & q=\frac{1}{2} \\
\frac{1-(p / q)^{N-i}}{1-(r / q)^{N}}, & \text { if } & q \neq \frac{1}{2}
\end{array}\right.
$$

Note that $\quad P_{i}+Q_{i}=1 \quad$ always.
This means that: the probability that wither A or B goes bankrupt is $=1$, so the game ends in finite time with prob. 1.
(This does not mean that game cannot go on forever!)

Ex: Suppose each round costs $\$ 1.00$ at a slot machine in which you win $\$ 2.00$ with probability $p=40 \%$, and lose your $\$ 1.00$ with probability $q=60 \%$. You have $\$ 10.00$ to play and decide you will keep playing until fou either lose all your money or double it. What is the proms. you lose all your money?

$$
p=0.4 \quad q=0.6 . \quad \frac{p}{q}=\frac{0.4}{0.6}=\frac{2}{3}
$$

Plajer A: you
Initial Wealth:

Player B: slot machine

$$
\begin{gathered}
\$ i=\$ 10.00 \\
\$(N-i)=\$ 10.00 \\
(\$ N=\$ 20.00)
\end{gathered}
$$

$$
\binom{\text { Prob. that you }}{\text { lose all your money }}=Q_{10}=\frac{1-(2 / 3)^{10}}{1-(2 / 3)^{20}}=\frac{59,049}{60,073}
$$

$$
=98.3 \%
$$

