MAT $330 / 681$
Lecture 6
Bayes Formula

$E F^{C} \quad E F$

From last time:

$$
P(E \mid F)=\frac{P(E F)}{P(F)} \longrightarrow P(E F)=P(E \mid F) \cdot P(F)
$$

a weighted average of $P(E \mid F)$ and $P\left(E \mid F^{-}\right)$

Ex: An insurance company designates people as "accident-prone" or not. Someone that is accident-prone has 40% chance of having an accident in the $1^{\text {st }}$ year of a policy, while someone who is not accident-prove has only half that chance.
Q1: If 30% of the population is accident-prone, what is the chance of a new policy holder having an accident in their first year?
$A_{1}=$ having an accident in $1^{\text {st }}$ year $P(A)=0.3, P\left(A^{c}\right)=0.7$
$A=$ being accident-prove.

$$
P\left(A_{1} \mid A\right)=0.4 \quad P\left(A_{1} \mid A^{c}\right)=0.2
$$

$$
P\left(A_{1}\right)=\underbrace{P\left(A_{1} \mid A\right)}_{0.4} \underbrace{P(A)}_{0.3}+\underbrace{P\left(A_{1} \mid A^{c}\right)}_{0.2} \cdot \underbrace{P\left(A^{c}\right)}_{0.7}=0.12+0.14=0.26
$$

Q2: If a new policy holder had an accident in their $1^{\text {st }}$ year, what is the prob. they ore accident-prove?

$$
\begin{aligned}
P\left(A \mid A_{1}\right) & =\frac{P\left(A A_{1}\right)}{P\left(A_{1}\right)}=\frac{P\left(A_{1} \mid A\right) \cdot P(A)}{P\left(A_{1}\right)}=\frac{0.4 \cdot 0.3}{0.26}=\frac{6}{13} \\
P\left(A_{1} \mid A\right) & =\frac{P\left(A_{1} A\right)}{P(A)} \Rightarrow P\left(A_{1} A\right)=P\left(A_{1} \mid A\right) \cdot P(A)
\end{aligned}
$$

Ex. Suppose that a multiple choice question in a Final Exam has 5 alternatives, and only 1 is correct. The probability that a student knows the answer to that question is p; and if the student doesn't know it, they guess the answer at randoms.
a) What is the prob. That the stuokent knew the answer given that they got the correct answer?
$K=$ knowing the answer
$C=$ getting the correct answer.

$$
\begin{aligned}
P(K \mid C) & =\frac{P(K C)}{P(C)}=\frac{\overbrace{P(C \mid K)}^{P(K)}}{P(C \mid K)} \underbrace{P(K)}_{1}+\underbrace{P\left(C \mid K^{c}\right)}_{p} \cdot \underbrace{P\left(K^{c}\right)}_{1 / 5} \\
& =\frac{P}{p+\frac{1}{5}(1-p)}
\end{aligned}
$$

b) What is the prob. Hat the student got the correct answer and did not know the correct answer?

$$
\begin{aligned}
& P\left(C K^{c}\right)=\underbrace{P\left(C \mid K^{c}\right)}_{1 / 5} \underbrace{P\left(K^{c}\right)}_{1-p}=\frac{1-p}{5} . \\
& \text { E.g., if } p=\frac{1}{2}: \quad \text { a) } \frac{5 p}{4 p+1}=\frac{5 / 2}{3}=\frac{5}{6}=83.33 \%
\end{aligned}
$$

b) $\frac{1-p}{5}=\frac{1}{10}=10 \%$

Curiosity:

$$
P\left(k^{c} \mid c\right)=1-P(k \mid c)=1-\frac{5 p}{4 p+1}
$$

$$
=\text { "prob. you had to guess, }
$$ given that you got the correct answer".

Upshot: Unless $p=1$ (you knew everything), as $M \uparrow+\infty$, the probe. you had to guess at least
1 ensurer given that you pot a 1 ensurer given that you got a perfect score goes to 100%.

Monty Hall problem
(1)
(2)
(3)

$$
H=\binom{\text { car is behind }}{\text { door \#1 }} \quad \text { "hypothesis" } \quad P(H)=\frac{1}{3}, P\left(H^{c}\right)=\frac{2}{3}
$$

$$
\begin{aligned}
& E=\binom{\text { host opens a door }}{w / \text { a goat and nocor }} \text { "evidence" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { success if }
\end{aligned}
$$ we don't switch

$$
P\left(H^{c} \mid E\right)=1-P(H \mid E)=1-\frac{1}{3}=\frac{2}{3} \text { if we switch. }
$$

EX: COVID tests
Edition 2021-02-05 (75) (With viral lead 3:)

Figure.

- PCR trot is portive w/ 90% prob.
- Antigen test is positive w/ 10y. prob.
-($\left.\begin{array}{cc}\text { False } & \text { positives } \\ \text { with } & \text { occur } \\ 2 \% & \text { prob. }\end{array}\right)$

Note: Adapted from Pekosz et al. Modelled probability distributions of each SARS-CoV-2 test type, RT-PCR, antigen, and viral cultures (VeroE6TMPRSS2 and VeroE6), across log-transformed viral load. As viral load increases, the probability of any test producing a positive result increases. Licensed under CC BY-NC-ND 4.0.
From Gaggle: Population of NY state: 19.45 million (NY Times) 7 -day average of cases per day in NY State: 7,400
$\Rightarrow \begin{aligned} & \text { Prevalence of disease: } \frac{74,000}{(\text { disease lots 10 dey) }} 19,450,000\end{aligned} 0.004$ (discos loots 10 days) $19,450,000 \quad(=0.4 \%)$
Q: If you get a positive PCR test, what is the prods. that you actually have COVID?
$D=$ Have the disease (Covid)
$E=$ Test is positive ("evidence") 0.90 .004

$$
P(D \mid E)=\frac{P(D E)}{P(E)}=\frac{\widetilde{P(E \mid D)} \cdot \widetilde{P(D)}}{\underbrace{P(E \mid D)}_{0.9} \underbrace{P(D)}_{0.004}+\underbrace{P\left(E \mid D^{C}\right)}_{0.02} \cdot \underbrace{P(D)}_{0.996}}=\underbrace{15.30 \%}_{1}
$$

How to make better teats?

$$
\begin{aligned}
& P(D E)=P(E \mid D) P(D) \\
& \text { One of the issues } \\
& \text { with the } \\
& \text { numbers above is } \\
& \text { the page prob. of } \\
& \text { false positives } \\
& \text { If we replace: } \\
& P\left(E \mid D^{c}\right)=0.001 \\
& P(D \mid E)=\frac{0.9 \cdot 0.004}{0.9 \cdot 0.004+0.001 \cdot 0.996}=78.33 \%
\end{aligned}
$$

making this

