Conditional Probability

$$
\text { Def. } P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{P(E F)}{P(F)}
$$

If S is finite and all outcomes are equally likely:

$$
\begin{aligned}
& P(E)=\frac{|E|}{|S|} P(F)=\frac{|F|}{|S|} P(E F)=\frac{|E \cap F|}{|S|} \\
& P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{|E \cap F| /|S|}{|F| /|S|}=\frac{|E \cap F|}{|F|} .
\end{aligned}
$$

Ex. 2 (fair) wins are flipped. What is the prob. of both landing on heads, given that:
a) first win lands on heads?
b) at least one win lands on heads?

$$
\begin{equation*}
S=\{(t, t),(t, h),(h, t),(h, h)\} \quad|s|=4 \tag{h,h}
\end{equation*}
$$

a)

$$
\begin{aligned}
P((\underbrace{}_{h} h) & \underbrace{P}_{\substack{\text { Kist } \\
\text { is h } \\
\text { Both } \\
h \\
\text { hit) } \cup(h, h)}}
\end{aligned}=\frac{P((h, h) \cap[(h, t) \cup(h, h)])}{P((h, t) \cup(h, h))}, ~=\frac{P((h, h))}{P((h, t) \cup(h, h))}=\frac{1}{2} .
$$

b) $P((h, h) \mid(t, h) \cup(h, t) \cup(h, h))=\frac{P((h, h))}{P((t, h) \cup(h, t) \cup(h, h))}=\frac{1}{3}$.

Ex: If 18% of Lehman students play tennis and baseball, and 32% tennis, what is the prob. that a student plays baseball, given that this student plays tennis?
$T=$ Student plays tennis
$B=$ student plays baseball

$$
\begin{aligned}
& P(T)=\frac{32}{100}, P(T B)=\frac{18}{100} . \quad P(B \mid T)=? \\
& P(B \mid T)=\frac{P(T B)}{P(T)}=\frac{\frac{18}{100}}{\frac{32}{105}}=\frac{9}{16}=56.25 \% \\
& P(T \mid B)=\frac{P(T B)}{P(B)} \leftarrow{ }^{\text {we don't }} \begin{array}{l}
\text { Know this. }
\end{array} \\
& P\left(B^{c} \mid T\right)=\frac{P\left(B^{c} T\right)}{P(T)}=\frac{11 / 100}{32 / 100}=\frac{14}{32}=\frac{7}{16}=1-\frac{9}{16} \\
& P: P(S) \rightarrow[0,1]
\end{aligned}
$$

Thu: $P(j \mid E)$ is a pod.

Multiplication rule
Suppose we have events $E_{1}, E_{2}, \ldots, E_{n}$.

$$
P\left(E_{1} E_{2} \ldots E_{n}\right)=P\left(E_{1}\right) \cdot P\left(E_{2} \mid E_{1}\right) \cdot P\left(E_{3} \mid E_{1} E_{2}\right) \ldots P\left(E_{n} \mid E_{1} \ldots E_{n-1}\right)
$$

PS:

$$
\begin{aligned}
& P\left(E_{1}\right) \cdot \underbrace{}_{\frac{P\left(E_{1} E_{2}\right)}{P\left(E_{2} \mid E_{1}\right)} \cdot \underbrace{P\left(E_{1} E_{2}\right)}_{\frac{P\left(E_{1} E_{2} E_{3}\right)}{P\left(E_{1}\right)}} \cdot \underbrace{P\left(E_{n} \mid E_{1} \ldots E_{n-1}\right)}_{\frac{P\left(E_{1} \ldots E_{n}\right)}{P\left(E_{1} \ldots E_{n-1}\right)}}=}=P\left(E_{1}^{x}\right) \frac{P\left(E_{1} E_{2}\right)}{P\left(E_{1}\right)} \cdot \frac{P\left(E_{1} E_{2} E_{3}\right)}{P\left(E_{1} E_{2}\right)} \cdots \cdot \frac{P\left(E_{1} \cdots E_{n}\right)}{P\left(E_{1}-E_{n-1}\right)}=P\left(E_{1} \cdots E_{n}\right) .
\end{aligned}
$$

Ex: A standeral deck with 52 cords is randomly divided into 4 piles (with 13 cords each). What is the pros. that each pile contains exactly 1 ace?
$E_{1}=\{A$ of spodes going on some pile $\}$
$E_{2}=\{A$ of hearts and A of spodes go in different piles $\}$
$E_{3}=\{A$ of clubs, A hearts, and topodes go in different piles $\}$ $E_{4}=\left\{\right.$ All A^{\prime} 's go in different piles $\}$.

$$
\begin{aligned}
& \begin{array}{c}
E_{4} \subset E_{3} \subset E_{2} \subset E_{1} \\
E_{3}
\end{array} \\
& P\left(E_{1}\right)=1 \\
& P\left(E_{2} \mid E_{1}\right)=1-P\left(E_{2}^{c} \mid E_{1}\right)^{\frac{12}{51}}=1-\frac{12}{51} . \\
& P\left(E_{3} \mid E_{1} E_{2}\right)=1-P\left(E_{3}^{c} \mid E_{1} E_{2}\right)=1-\frac{24}{50} \\
& P\left(E_{9} \mid E_{1} E_{2} E_{3}\right)=1-\frac{36}{49} \\
& P\left(E_{4}\right)=P\left(E_{1} E_{2} E_{3} E_{4}\right) \\
& \begin{array}{c}
\text { ult. } \\
\text { rule }
\end{array}>P\left(E_{1}\right) \cdot P\left(E_{2} \mid E_{1}\right) \cdot P\left(E_{3} \mid E_{1} E_{2}\right) \cdot P\left(E_{4} \mid E_{1} E_{2} E_{3}\right) \\
& =1 \cdot\left(1-\frac{12}{51}\right) \cdot\left(1-\frac{24}{50}\right) \cdot\left(1-\frac{36}{49}\right)=\frac{2197}{20825} \cong 10.55 \%
\end{aligned}
$$

Alternative Sol::

$$
P=\frac{\binom{13}{1} \cdot\binom{13}{1} \cdot\binom{13}{1} \cdot\binom{13}{1}}{\binom{52}{4}}=\frac{13^{4}}{\binom{22}{4}}=\frac{2197}{20825} .
$$

Ex: You lost your keys and are 80% sure they ore in one of 2 pockets in your wat; being 40% sure they are on the Left rocket, and 40% sure thy y are on the Right pocket. If you look in the left pocket and they ore not there, what is the joab. You find them in the Right?
$L=$ keys are in left pocket
$R=$ keys are in right pocket.

$$
\begin{aligned}
& P(L)=P(R)=\frac{40}{100}=\frac{2}{5} . \quad P\left(R / L^{c}\right)=? \\
& P\left(R \mid L^{c}\right)=\frac{P\left(R L^{c}\right)}{P\left(L^{c}\right)}=\frac{P(R)}{1-P(L)}=\frac{2 / 5}{1-2 / 5}=\frac{2 / 5}{3 / 5}=\frac{2}{3}
\end{aligned}
$$

