Inclusion-Exclusion principle:

prinaple:

S Pl: $E \cup F=\left(E \cap F^{c}\right) \cup F$

$$
\begin{align*}
& \left(E \cap F^{c}\right) \cup(E \cap F)=E \tag{1}
\end{align*}
$$

$$
\begin{aligned}
P(E \cup F) & =P\left(\left(E \cap F^{c}\right) \cup F\right) \\
(\text { (iii) } & =P\left(E \cap F^{c}\right)+P(F)
\end{aligned}
$$

\uparrow disjoint!

$$
\xrightarrow{\text { (iii) }} \underbrace{P\left(\left(E \cap F^{C}\right) \cup(E \cap F)\right.}_{P\left(E \cap F^{\prime}\right)+P(E \cap F)})=P(E)
$$

$$
\begin{equation*}
\Longrightarrow P\left(E \cap F^{C}\right)=P(E)-P(E \cap F) \tag{2}
\end{equation*}
$$

By (1) \& (2), we conduce $P(E \cup F)=P(E)+P(F)-P(E \cap F)$.
Amazon's artificial intelligence predicts there is a:

- 50% chance you will like book A
- 40% chance you will like book B
- 30% chance you will like both books A and B. What is the implied chance you do not like either?
$A=$ event that you bite book A

$$
B=\square B
$$

$$
A \cap B=
$$

$$
\begin{aligned}
& P(A)=\frac{1}{2} \\
& P(B)=\frac{2}{5} \\
& P(A \cap B)=\frac{3}{10}
\end{aligned}
$$

\qquad A and B

$$
\begin{aligned}
P\left((A \cup B)^{c}\right) & =P\left(A^{c} \cap B^{c}\right)=? \\
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =\frac{1}{2}+\frac{2}{5}-\frac{3}{10}=\frac{5+4-3}{10}=\frac{6}{10}=\frac{3}{5} \\
P\left((A \cup B)^{C}\right) & =1-P(A \cup B)=1-\frac{3}{5}=\frac{2}{5}(40 \%)
\end{aligned}
$$

Note: $P\left(E^{c}\right)=1-P(E)$.
PR: $P\left(E^{c} \cup E\right)=P(S)=1$

$$
\Rightarrow \quad P\left(E^{c}\right)=1-P(E) .
$$

$$
P\left(E^{c}\right)+P(E)
$$

Inclusion-Exclusion principle with 3 or more sets:

$$
\begin{aligned}
P(E \cup F \cup G)= & P(E)+P(F)+P(G) \\
& -P(E \cap F)-P(E \cap G) \\
& -P(F \cap G) \\
& +P(E \cap F \cap G)
\end{aligned}
$$

With more sets: $E_{1}, E_{2}, E_{3}, \ldots, E_{n}$:

$$
P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i_{1}}(-1)^{2} P\left(E_{i}\right)+\sum_{i_{1}<i_{2}}(-1)^{3} P\left(E_{i_{1}} \cap E_{i_{2}}\right)
$$

$$
\begin{gathered}
+\sum_{i_{1}<i_{2}<i_{3}}(-1)^{4} P\left(E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}}\right)+\cdots \\
\ldots+\sum_{i_{1}<i_{2}<\ldots<i_{k}}(-1)^{k+1} P\left(E_{i_{1}} \cap \ldots \cap E_{i_{k}}\right) \cdots+(-1)^{n+1} P\left(E_{1} \cap \ldots \cap E_{n}\right)
\end{gathered}
$$

$$
P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{k=1}^{n}(-1)^{k+1} \sum_{i_{1}<\ldots<i_{k}} P\left(E_{i_{1}} \cap \ldots \cap E_{i_{k}}\right)
$$

Matching problem:
When classes were in person, n students were always on their phones, so the professor collected the phones and placed them in a bucket. Suppose all phones were identical models, and couldn't be distinguished from the outside. At the end of class, when these n students prick a phone at random from the bucket, what is the probability that no one pricks their own phone?

- $E_{i}=i^{\text {th }}$ student pricking their own phone.
- $E_{1} \cup E_{2} \cup \ldots \cup E_{n} \leftarrow$ at least someone pricks up their own phone
- $\left(E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right)^{c}=E_{1}^{c} \cap E_{2}^{c} \cap \ldots \cap E_{n}^{c} \leqslant \begin{gathered}\text { desired } \\ \text { probability }\end{gathered}$
- Inclusion-exclusion principle:

$$
\begin{aligned}
& P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right)=\sum_{k=1}^{n}(-1)^{k+1} \sum_{i_{1}<\ldots<i_{k}} \underbrace{P\left(E_{i_{1}} \cap \ldots \cap E_{i_{k}}\right)}_{?} \\
& \phi\left(E_{i_{1}} \cap \ldots \cap E_{i_{k}}\right)=\frac{(n-k)!<}{n!} \underset{\substack{\text { permutations } \\
\text { incl } \\
\text { toter } \\
\text { permutations }}}{\text { where }} \\
& \text { (LOG: } i_{1}=1, i_{2}=2, \ldots, i_{k}=k \text {) } \\
& \underbrace{\frac{1}{1} \frac{2}{2} \omega \ldots \cdot \frac{k}{k} \left\lvert\, \underbrace{\frac{*}{k+1}} \frac{*+. . \frac{k}{n}}{n}\right.}_{(n-k)} \\
& \text { How many } \\
& \text { permutations of } \\
& 123 \ldots-n \\
& \begin{array}{l}
\text { fix the first } \\
\text { K slots? }
\end{array} \\
& (n-k)! \\
& \begin{aligned}
& P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right)= \sum_{k=1}^{n}(-1)^{k+1} \sum_{i_{1}<\ldots<i_{k}} \underbrace{P\left(E_{i_{1}} \cap \ldots \cap E_{i_{k}}\right)}_{\text {There are }} \\
& \frac{(n-k)!}{k!}
\end{aligned} \\
& \binom{n}{k}=\frac{n!}{k!(n-k)!} \\
& \binom{n}{k} \text {. collections of } \\
& \text { indices } i_{1}<\cdots<i_{K} \\
& =\sum_{k=1}^{n}(-1)^{k+1}\binom{n}{k} \frac{(n-k)!}{n!}=\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k!}
\end{aligned}
$$

$$
\begin{aligned}
& P\left(\left(\bigcup_{i=1}^{n} E_{i}\right)^{c}\right)=1-P\left(\bigcup_{i=1}^{n} E_{i}\right)=1-\left(\frac{1}{1}-\frac{1}{2!}+\frac{1}{3!} \cdots \frac{(-1)^{n+1}}{n!} \prod^{n}\right) \\
&=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+\frac{(-1)^{n}}{n!} \\
&=\sum_{k=n}^{n} \frac{(-1)^{j}}{j!}=\sum_{j=2}^{n} \frac{(-1)^{j}}{j!} \\
& \text { Upshot: } \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \text { A: } p(n)=\sum_{j=0}^{n} \frac{(-1)^{j}}{j!} \\
& n=5 \quad p(5)=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}=\frac{11}{30} \cong 36.6 \% \\
& n \rightarrow \infty \\
& \lim _{n \rightarrow \infty} p(n)=\sum_{j=0}^{+\infty} \frac{(-1)^{j}}{j!} \xlongequal{j!} e^{-1}=\sum_{j=0}^{+\infty} \frac{x^{j}}{j!}
\end{aligned}
$$

Ex: Suppose that 10 couples sit on a large round table, taking seats at random. What is the probability that no couple ends up sitting together?

$$
\begin{aligned}
& E_{i}=i^{\text {th }} \text { couple } \\
& \text { sits together } \\
& 10
\end{aligned}
$$

$\bigcup_{i=1}^{10} E_{i} \leftarrow$ at least one auple sits together $\left(\bigcup_{i=1}^{10} E_{i}\right)^{c}=\bigcap_{i=1}^{10} E_{i}^{c} \longleftarrow$ no couple sits $_{\substack{\text { together }}}$ $P\left(\left(\bigcup_{i=1}^{10} E_{i}\right)^{c}\right)=1-P\left(\bigcup_{i=1}^{10} E_{i}\right) \leftarrow \stackrel{\text { desired }}{\text { prob. }}$

$$
p\left(\bigcup_{i=1}^{00} E_{i}\right)=\sum_{k=1}^{10}
$$

$\binom{10}{k}$ terms in

$$
P\left(E_{i_{1}} \cap \ldots \cap E_{i_{k}}\right)=\frac{2^{k}(19-k)!}{19!} \text { bc: }
$$

Q1: In how many ways can 20 people sit on round tole?

$$
\left.\begin{array}{l}
12 \ldots-20 \\
2012
\end{array}\right\} \begin{aligned}
& \text { shifts need } \\
& \text { to be } \\
& \text { identified }
\end{aligned} \longrightarrow 20!+19!
$$

Q2i In how many ways can k couples sit together? $\left.\begin{array}{l}\text { "Fix" } K \text { couples in their seats, and permute } \\ \text { the remaining people. }\end{array}\right\}(1 q-K)$!
$\sum_{k=1}^{0} \underbrace{0}_{k=2}$
$\underbrace{0_{k=2}^{0}}_{k=1} \underbrace{2}_{k=2}$
Thus,

$$
\begin{aligned}
\phi\left(\bigcup_{i=1}^{10} E_{i}\right) & =\sum_{k=1}^{10}(-1)^{k+1} \sum_{\substack{10 \\
i_{1} \text { equel } \\
k \\
i_{1}<\cdots<i_{k}}}^{\sum_{\text {terns }}} \frac{2^{k(19-k)!}}{19!} \\
& =\sum_{k=1}^{10}(-1)^{k+1}\binom{10}{k} \frac{2^{k}(19-k)!}{19!} \\
& =\underbrace{\binom{10}{1} 2 \frac{18!}{19!}}_{k=1}-\underbrace{\binom{10}{2} \cdot 2^{2} \frac{17!}{19!}}_{k=10}+\cdots-\binom{10}{10} 2^{109!} \frac{19!}{19!}
\end{aligned}
$$

A: Derired probebility is 1-0.66050.3395

$$
(33.95 \%)
$$

Ex: If you puck a number at random between 1 and 1000, what is the probability that it is divisible by 7 or by 11?
How about divisible by 7 , or 11, or 13?
$A=$ your number is divisible by 7
\qquad
$C=13$

$$
\begin{array}{ll}
P(A \cup B)=? & P(A \cup B \cup C)=? \\
P(A)=\frac{142}{1000}, P(B)=\frac{90}{1000}, & P(C)=\frac{76}{1000}
\end{array}
$$

How many numbers between 1 and 1000 are multiples of 7 ?

$$
\left\lfloor\frac{4000}{7}\right\rfloor=\lfloor 142.857\rfloor=142 .
$$

Similarly, $\left\lfloor\frac{1000}{11}\right\rfloor=\lfloor 90,9091]=90$.

$$
\begin{aligned}
& \left\lfloor\frac{1000}{13}\right\rfloor=\lfloor 76.92\rfloor=76 \\
& P(A \cap B)=\frac{\left\lfloor\frac{1000}{77}\right\rfloor}{1000}=\frac{12}{1000}
\end{aligned}
$$

- being divisible by 7 and by $11 \Longleftrightarrow$ being divisible

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{142}{1000}+\frac{90}{1000}-\frac{12}{1000} \\
& =\frac{220}{1000} \xlongequal[22 \%]{2} \\
& P(A \cup B \cup C)=\underbrace{P(A)+P(B)+P(C)}_{k=1}-\underbrace{(P(A B)+P(A C)+P(B C)}_{k=2}) \\
& +P(A B C) \text {. } \\
& =\frac{142}{1000}+\frac{90}{1000}+\frac{76}{1000}-\left(\frac{12}{1000}+\frac{6}{1000}+\frac{10}{1000}\right) \\
& P(B C)=\frac{\left\lfloor\frac{1000}{11.13}\right\rfloor}{1000}=\frac{6}{4000} \quad=\frac{308}{1000}-\left(\frac{28}{1000}\right) \\
& =\frac{280}{1000}=\frac{28}{100}=28 \% \\
& P(A C)=\frac{\left\lfloor\frac{1000}{7 \cdot 13}\right\rfloor}{1000}=\frac{10}{9000} \\
& P(A B C)=0 \text {. } \\
& 7 \cdot 11 \cdot 13=1001>1000 .
\end{aligned}
$$

