Probability
Def: Sample space S is the collection of all possible outcomes of an experiment. Subsets ECS ore called events.
Ex: Coin toss $S=\{t, h\}$
Toss 2 dice

$$
\begin{aligned}
& S=\{(i, j): 1 \leq i, j \leq 6\} \\
& E=\left\{\begin{array}{ll}
(2,2), & (2,4), \\
(4,2), & (4,6), \\
(6,2), & (4,6),
\end{array}\right\}, \begin{array}{l}
\text { "getting } \\
\text { even } \\
\text { numbers } \\
\text { on both } \\
\text { dice" }
\end{array} \\
& F=\{(1,1),(6,2),(3,3),(4,4),(5,5),(6,6)\} \begin{array}{l}
\text { "Same } \\
\text { carven } \\
\text { bound } \\
\text { both }
\end{array}
\end{aligned}
$$

Def: $E^{c}=S \backslash E$ complement of E "not $E^{\prime \prime}$

- $E \cap F=E F$ intersection of E and F " E and F "
- EUF union of E and F ("E or F "

Basic proppertioo: Say $E, F, G C S$ are events. Commutative: $E \cap F=F \cap E(E F=F E), \quad E \cup F=F \cup E$.

$$
\text { Associative: }(E \cap F) \cap G=E \cap(F \cap G)=E \cap F \cap G
$$

$$
(E \cup F) \cup G=E \cup(F \cup G)=E \cup F \cup G
$$

Distributive: $(E \cup F) \cap G=(E \cap G) \cup(F \cap G)$
Diagram:

DeMorgan's Laws:

$$
\begin{aligned}
& (E \cap F)^{c}=E^{c} \cup F^{c} \\
& \cdot(E \cup F)^{c}=E^{c} \cap F^{c}
\end{aligned}
$$

Say $E_{1}, E_{2}, \ldots, E_{n}$ are events. Then:

$$
\begin{aligned}
& \left(\bigcap_{i=1}^{n} E_{i}\right)^{c}=\prod_{i=1}^{n} E_{i}^{c} \\
& \cdot\left(\bigcup_{i=1}^{n} E_{i}\right)^{c}=\prod_{i=1}^{n} E_{i}^{c}
\end{aligned}
$$

Measure - theoretic probability:
A probability on a sample space S is a function

$$
P: \underset{\sim}{p(S)} \longrightarrow[0,1]
$$

such that $\sim \mathcal{R} P(s)=\{$ All subsets of $S\}$
"Set of parts of S "
(i) $\quad \forall E \subset S, \quad 0 \leq P(E) \leq 1$
(ii) $P(S)=1$
(iii) $P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)$ if $\underbrace{E_{i} \cap E_{j}=\phi, \forall i \neq j}_{\text {"mutually disjoint evours" }}$

Consequences:

- $P(\phi)=0$.

000
O-.. O
"all separate"
Pf: $P(\phi \cup S)^{(i i i)}=P(\phi)+\underbrace{P(S)}_{1^{(i)}}$ b/c $\phi \cap S=\phi$.

$$
\begin{array}{lll}
\| s=\text { sup. } & 1^{(i)} & P(\phi)+1=1 \\
P(S) \stackrel{(i i)}{=} 1 & & P(\phi)=0 .
\end{array}
$$

- Probabilities when all outcomes in sample space are equally likely.

$$
S=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \leftarrow \text { finite set: } \quad|s|=n
$$

All outcomes ore equally likely: $P\left(\left\{e_{i}\right\}\right)=P\left(\left\langle e_{j}\right\}\right) \forall i, j$

Since they are all equal, let $p=P(\{e i i) \in[0,1]$.

$$
\begin{aligned}
& 1 \stackrel{(i i)}{=} P(S)=\underbrace{(i i i)}_{p}=\underbrace{p\left(\left\langle e_{1}\right\}\right)}_{p}+\underbrace{p\left(\left\langle e_{2}\right\}\right)}_{p}+\cdots+\underbrace{p\left(\left\langle e_{n}\right\}\right)}_{p}=n \cdot p \\
& \quad \Rightarrow p=\frac{1}{n}=\frac{1}{|S|}
\end{aligned}
$$

Given any event $E \subset S$, it can be written as:

$$
\begin{aligned}
& E=\left\{e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{k}}\right\} \quad 0 \leq k \leq n . \\
& P(E)=\underbrace{P\left(\left\{e_{i_{1}}\right\}\right.}_{p})+\underbrace{P\left(\left\{e_{i_{2}}\right\}\right.}_{p})+\cdots+\underbrace{P\left(\left\{e_{i_{k}}\right\}\right)}_{p}=k \cdot p=\frac{k}{n} \\
& P(E)=\frac{k}{n}=\frac{|E|}{|S|}
\end{aligned}
$$

Upshot: When all outcomes ore equally likely, and the sample space S is finite $(|S|<\infty)$, then

$$
P(E)=\frac{|E|}{|S|}=\frac{\# \text { of elements of } E}{\# \text { of elements of } S}
$$

Ex: - Coin toss: $S=\{t, h\} \quad P(t)=\frac{1}{2}=\frac{\#\{t\}}{|S|}$

- Throwing 2 dice $S=\{(i, j): 1 \leq i, j \leqslant 6\}$.

$$
\begin{array}{ll}
|S|=6.6=36 & P(E)=\frac{|E|}{|S|}=\frac{9}{36}=\frac{1}{4} \\
|E|=9, \quad|F|=6 & P(F)=\frac{|F|}{|S|}=\frac{6}{36}=\frac{1}{6}
\end{array}
$$

Cards: 52 cards, 4 suits $w / 13$ denominations

$$
A, 2,3,4,5,6,7,8,9,10, J, Q, K
$$

Poker: Hand = (5 cards)

$$
S=\{\text { set of all hands }\} \longleftarrow \text { sample space. }
$$

Q: How many hands of poker are possible?

$$
|\delta|=? \quad\binom{52}{5}=\frac{52!}{47!5!}=2,598,960
$$

A: 10. $\left(4^{5}-4\right)$ straight hands.

$$
P(\text { Straight })=\frac{10\left(4^{5}-4\right)}{\binom{52}{5}} \cong 0.0039 \quad(0.39 \%)
$$

Ex Suppose a children's game consist of th prieus of 4 colors:
$\Delta \nexists$
\square

$$
\Delta A
$$

\square
All pieces ore given to 2 players. How many sets of pieces can a player recuive?

$$
\binom{16}{8}=\frac{16!}{8!8!}
$$

What is the probability that both plovers receive the same number of blue price?

What is the probability that one player receives all the squares?

$$
\frac{\binom{4}{4} \cdot\binom{12}{4}}{\binom{16}{8}}=\frac{1}{26} \cong 3.8 \%
$$

