Lecture 25
"Surprise"
$S(p)=$ "amount of surprise from learning that an event with probability P of happening took place."

Axiom 1. $\quad S(1)=0$
Axiom 2. $S(p)$ is strictly decreasing as a function of p :

$$
p<q \Rightarrow S(p)>S(q)
$$

Axiom 3. $S(p)$ is a continuous function of p.
Axiom 4 $. \quad S(p q)=S(p)+S(q), \quad p, q \in(0,1]$
Thu. If $S:(0,1] \rightarrow \mathbb{R}$ satisfies the above Axioms 1-4, then $S(p)=-C \log _{2} p$; where $C>0$.
Pl. From Axiom 4 with $q=p, S\left(p^{2}\right)=S(p)+S(p)=2 S(p)$ with $q=p^{2}, S\left(p^{3}\right)=S\left(p^{2}\right)+S(p)=3 S(p)$
by induction, we find that $S\left(p^{m}\right)=m \cdot S(p)$ for all $m \in \mathbb{N}$.

Move generally, replacing p with $p^{1 / x}$ above, we hove:

$$
S(p)=S(\underbrace{p^{1 / n} \cdot p^{1 / u} \cdot \cdots p^{1 / u}}_{n})=n S\left(p^{1 / n}\right)
$$

Thus $S\left(p^{1 / n}\right)=\frac{1}{n} S(p)$
Altogether, $S\left(p^{m / n}\right)=m S\left(p^{1 / n}\right)=\frac{m}{n} S(p)$, i.e. $S\left(p^{x}\right)=x S(p)$ for all $x \in \mathbb{D}$.
By density of \mathbb{Q} in \mathbb{R} and continuity of S (Aycom 3), we conclude that

$$
S\left(p^{x}\right)=x S(p) \text { for all } x \in \mathbb{R}
$$

For any $p \in(0,1]$, let $x=-\log _{2} p$, so $p=\left(\frac{1}{2}\right)^{x}$, therefore

$$
\begin{gathered}
S(p)=S\left(\left(\frac{1}{2}\right)^{x}\right)=x \underbrace{S\left(\frac{1}{2}\right)}_{\text {Axiom 2 }}=-C \log _{2} p \\
\text { A rim 1 }^{S}
\end{gathered}
$$

where $C=S\left(\frac{1}{2}\right) \stackrel{\downarrow}{>} S(1) \stackrel{\delta^{6}}{=} 0$.

Q: What does "Surprise" mean?
A: In probability, "Surprise" measures uncertainty. In information theory, "surprise" measures the amount of information that is learnt upon observing on event. It is enstomery to normalize $C=1$, in which case

$$
I(p)=S(p)=-\log _{2} p
$$

is called "information content", measured in bits.

Def: The Shannon Entropy of a discrete random variable X is the expected value of the information content of X :

$$
\begin{aligned}
& H(X)=E(I(X))=\sum_{i=1}^{n} p_{i} \underbrace{I\left(p_{i}\right)}_{\substack{\| \\
-\log _{2} p_{i}}}=-\sum_{i=1}^{n} p_{i} \log _{2} p_{i} \\
& \text { where: }
\end{aligned}
$$

X	x_{1}	x_{2}	\ldots	x_{n}
$p\left(X=x_{i}\right)$	p_{1}	p_{2}	\cdots	p_{n}

$$
p_{i}=P\left(X=x_{i}\right)
$$

prob. moss function of X.

Example: Flip of a (possibly biased) coin.
$X \sim$ Bernoulli (p)

$$
\begin{aligned}
& P(X=H)=r \\
& P(X=T)=1-p
\end{aligned}
$$

$$
H(X)=-p \log _{2} p-(1-p) \log _{2}(1-p)
$$

Note that the largest value possible for $H(X)$ is attained when $p=1 / 2$ (unbiased win):

$$
H(X)=-\log _{2} \frac{1}{2}=+1
$$

while, e.8.) with $p=0.7$, ane has $H(X) \cong 0.882<1$.
Codes and coding

measures X which
tales 4 possible value:

$$
=\stackrel{A}{x_{1} \leftrightarrow 00} \begin{aligned}
& x_{2} \leftrightarrow 01 \\
& x_{3} \leftrightarrow 10 \\
& x_{4} \leftrightarrow 11
\end{aligned}
$$

or
B
$x_{1} \leftrightarrow 0$
$x_{2} \leftrightarrow 10$
$x_{3} \longleftrightarrow 110$
$x_{4} \leftrightarrow 111$

To avoid aubiguitios, need that none of the sequences (coder) is an extension of another shorter Sequence.
Q: How many bits are we going to send on average?
A: For example, if the pros. distr. of X is

X	x_{1}	x_{2}	x_{3}	x_{4}
$P\left(X=x_{i}\right)$	$\frac{1}{2}$	$1 / 4$	$1 / 8$	$1 / 8$

Hen:

$$
\begin{aligned}
E(\# \text { bits using } A) & =\frac{1}{2} \cdot 2+\frac{1}{4} \cdot 2+\frac{1}{8} \cdot 2+\frac{1}{8} \cdot 2=2 \\
E(\# \text { bits using } B) & =\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 2+\frac{1}{8} \cdot 3+\frac{1}{8} \cdot 3 \\
& =1+\frac{3}{4}=1.75
\end{aligned}
$$

Therefore, using B is endvontegeors: on average, we ail only need 1.75 bits to be sent each time, compared with 2 bits oh average if we used A.

Q1: What is the "best" possible code?
Q2: How small can the expected \# of bits be?
A2: The expected \# of bits needed to encode a randan variable X is at lest $H(X)$.
(Before proving this, need some praliminag work)
Encode X using binary codes as follows:

Lemme: Let $x_{j}=$ length of code used for x_{j}. Such an unambiguous code (with these lengths) exists if and only if $\sum_{j=1}^{N}\left(\frac{1}{2}\right)^{x_{j}} \leq 1$
Pl: Let $w_{j}:=\#\left\{i: n_{i}=j\right\} \longleftarrow$ number of length j with length j
Need $w_{1}=\#\left\{i: n_{i}=1\right\} \leq 2_{b i c}^{k}$ avau:losle. bic words of length 2
Similarly, $w_{2} \leq 2^{2}-2 w_{1}<$ cannot be exteenseons of words

By induction, one sees that:

$$
w_{n} \leq 2^{n}-w_{1} 2^{n-1}-w_{2} \cdot 2^{n-2}-\cdots-w_{n-1} \cdot 2^{1}
$$

is both necessary and sufficient.
Rewrite the above as:

$$
w_{n}+w_{n-1} \cdot 2+w_{n-2} \cdot 2^{2}+\cdots+w_{2} \cdot 2^{n-2}+w_{1} \cdot 2^{n-1} \leq 2^{n}
$$

Dividing by 2^{n}, we have:

$$
\underbrace{\text { for all } n \text {. }}_{\sum_{j=1}^{n} \frac{w_{j}}{2^{j}}+\frac{w_{n-1}}{2^{n-1}}+\frac{w_{n-2}}{2^{n-2}}+\cdots+\frac{w_{2}}{2^{2}}+\frac{w_{1}}{2^{1}} \leq 1 .} \text {. }
$$

Since $w>0$, the dove holds for all $n \in \mathbb{N}$ if and only if the secies with $n \nearrow+\infty$ satiates

$$
\sum_{j=1}^{\infty} w_{j}\left(\frac{1}{2}\right)^{j}=\sum_{j=1}^{\infty} \frac{w_{j}}{2 j} \leq 1
$$

Recall $w_{j}=$ \#\{i: $\left.n_{i}=j\right\}$, so $\sum_{j=1}^{\infty} w_{j}\left(\frac{1}{2}\right)^{j}=\sum_{i=1}^{N}\left(\frac{1}{z}\right)^{n_{i}}$

Shannon's (noiseless) Coding Theorem.
Any binary code that unambiguously encodes a discrete venom variole X satisfies

$$
\underbrace{\left.\begin{array}{c}
\text { \# bits that ned } \\
\text { to be sent }
\end{array}\right)}_{\sum_{i=1}^{N} n_{i} p\left(x_{i}\right)} \geqslant \underbrace{H(X)}
$$

Pf. Let $p_{i}=p\left(x_{i}\right), \quad p_{i}=\frac{2^{-n_{i}}}{\sum_{j=1}^{N} z^{-n_{j}}} . \quad$ Note that
$\sum_{i=1}^{N} p_{i}=1 \quad$ and

$$
\begin{aligned}
& \sum_{i=1}^{N} p_{i}=1 \quad \text { and } \\
& \sum_{i=1}^{N} q_{i}=\sum_{i=1}^{N} \frac{2^{-n_{i}}}{\sum_{j=1}^{N} 2^{-n_{j}}}=\frac{\sum_{i=1}^{N} 2^{-n_{i}}}{\sum_{j=1}^{N} 2^{-n_{j}}}=1 . \\
& -\sum_{i=1}^{N} p_{i} \log _{2}\left(\frac{p_{i}}{q_{i}}\right)=+\log _{2} e \sum_{i=1}^{N} p_{i} \log \left(\frac{q_{i}}{p_{i}}\right) \\
& \quad \log _{2} x=\log _{2} e \log x
\end{aligned}
$$

$$
\begin{aligned}
\begin{aligned}
& \log _{\forall x>0} x \leq x-1 \log _{2} e \sum_{i=1}^{N} p_{i}\left(\frac{q_{i}}{p_{i}}-1\right) \\
&=\log _{2} e\left(\sum_{i=1}^{N}\left(q_{i}-p_{i}\right)\right) \\
&=\log _{2} e(\underbrace{\sum_{i=1}^{N} q_{i}}_{1}-\underbrace{\sum_{i=1}^{N} p_{i}}_{1})=0 \\
& \text { Thus } N
\end{aligned}
\end{aligned}
$$

$$
-\sum_{i=1}^{N} p_{i} \log _{2}\left(\frac{p_{i}}{q_{i}}\right) \leq 0
$$

Since $\log _{2} \frac{p_{i}}{q_{i}}=\log _{2} p_{i}-\log _{2} q_{i}$, we have:

$$
\begin{aligned}
H(x) & =-\sum_{i=1}^{N} p_{i} \log _{2} p_{i} \leq-\sum_{i=1}^{N} p_{i} \log _{2} q_{i} \\
& =-\sum_{i=1}^{N} p_{i} \log _{2}\left(\frac{2^{-n_{i}}}{\sum_{j=1}^{N} 2^{-n_{j}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\sum_{i=1}^{N} p_{i} \underbrace{\log _{2}\left(2^{-n_{i}}\right)}_{-n_{i}}-p_{i} \underbrace{\log _{2}}_{i} \underbrace{(\underbrace{\left.\sum_{j=1}^{N} 2^{-n_{j}}\right)}_{j=1}}_{<0} \\
& =\sum_{i=1}^{N} p_{i} \cdot n_{i}+\sum_{i=1}^{N} \underbrace{\log _{2}\left(\sum_{j=1}^{N} 2^{-n_{j}}\right)}_{i=1} \\
& \leq \sum_{i=1}^{N} p_{i} n_{i}=E(\# \text { bits needed }) .
\end{aligned}
$$

This gives a satisfactory answer to Q2. Regarding Q1, for general random variables, there does not exist a code resizing equality in Shannon's bound; ie, typically $E(\#$ bits needed $)>H(X)$. However, it is always possible to devise a code with $E($ hits needed $)<H(X)+1$.

