Markov Chains: Suppose that a system can be in one of
 n different states at each given time.
state: $213 \ldots 1 \cdots$
$\begin{array}{llllll}\text { Time: } & 1 & 2 & 3 & \cdots & k\end{array} \cdots$
If the system is in state i, the probainility that it transitions to state j in the next unit time is given by:

Past is irrelevant

$$
\stackrel{\downarrow}{=} P(X_{k+1}=j \mid \underbrace{X_{k}=i}_{\substack{\text { currant } \\ \text { state }}}, \underbrace{X_{k-1}=i_{k-1}, X_{k-2}=i_{k-2}, \ldots, X_{0}=i_{0}}_{\text {past }}, \forall k .
$$

to determine current transition probabilities.

Organize transition probabilities in a matrix, as follows:

Clearly, the sum of probabilities in each line of P is 1 .

$$
\sum_{j=1}^{n} P_{i j}=1 . \quad \begin{array}{r}
\text { His means that } P \\
\text { is a "stochastic } \\
\text { matrix!" }
\end{array}
$$

Example. Suppose you eat 1 of 3 desserts every dey:

1. Ice Cream
2. Cake
3. Chocolate

Assume the sequence of desserts you eat form a Morkor chain with transition probabilities as indicated.

$$
P=\left(\begin{array}{lll}
0.3 & 0.3 & 0.4 \\
0.5 & 0.4 & 0.1 \\
0.2 & 0.7 & 0.1
\end{array}\right)
$$

Q: What is the probability that you eat ICe Cream in 2 days, given that you ate cake today?
$k=0 \quad k=1 \quad k=2$

$$
\begin{aligned}
& P_{21}^{(2)}: P\left(X_{2}=1 \mid X_{0}=2\right)=? \\
& P_{21}^{(2)}=\sum_{i=1}^{n} P_{i k}^{n} P_{k j} P_{21} \cdot P_{11}+P_{22} \cdot P_{21}+P_{23} \cdot P_{31} \\
&=0.5 \cdot 0.3+0.4 \cdot 0.5+0.1 .0 .2 \\
&=0.15+0.20+0.02 \\
&=0.37 . \\
&=37 \%
\end{aligned}
$$

More generally, $P_{i j}^{(N)}=(i, j)$ entry of matrix P^{N}.
Q! What is the probability that you eat ICe Cream in 200 days, given that you ate cake today?

Wring $\frac{\text { Linear Agate, }}{P^{200} \cong\left(\begin{array}{lll}0.36 & 0.43 & 0.21 \\ 0.36 & 0.43 & 0.21 \\ 0.36 & 0.43 & 0.21\end{array}\right)}$
$N=200$

$$
p_{21}^{(200)} \cong 0.36=36 \%
$$

Chapman-Kolmogorov Equation
$P_{i j}^{(N)}=\sum_{k=1}^{n} P_{i k}^{(r)} P_{k j}^{(N-r)}, \quad$ for any $0<r<N$.

Probability of going from state i to state: outer N steps.

$$
\left(P_{i j}^{(1)}=P_{i j}\right)
$$

In particular, if $r=1$, then

$$
P_{i j}^{(N)}=\sum_{k=1}^{n} P_{i k} \cdot P_{k j}^{(N-1)} \ll\left(\begin{array}{c}
\text { Recursively } \\
\text { defining } \\
\text { (i,j)-enty oft ry of } \\
P^{N}
\end{array}\right)
$$

Pt.

$$
\begin{aligned}
P_{i j}^{(N)} & =P\left(X_{N}=j \mid X_{0}=i\right) \\
& =\sum_{k=1}^{n} \underbrace{P\left(X_{N}=j, X_{r}=k \mid X_{0}=i\right)}_{\frac{P\left(X_{N}=j, X_{r}=k, X_{0}=i\right)}{P\left(X_{0}=i\right)}} \\
& =\sum_{k=1}^{n} \underbrace{P\left(X_{r}=K, X_{0}=i\right)}_{\underbrace{P\left(X_{N}=j, X_{r}=k, X_{0}=i\right)}}
\end{aligned}
$$

By Morkor hyprthexis, $P\left(X_{N}=j \mid X_{r}=K, X_{0}=i\right)=P\left(X_{\omega}=j \mid X_{r}=k\right)=P_{K j}^{(N-r)}$

$$
\cdots=\sum_{k=1}^{n} P_{k j}^{(N-r)} \cdot P_{i k}^{(r)}=\sum_{k=1}^{n} P_{i k}^{(r)} \cdot P_{k_{j}}^{(N-r)} .
$$

Q1: Over the long run, with what frequency is state \dot{S} visited?
Q2. As time goes to $+\infty$, in what state is the system moot likely to be?

Ql:

$$
\pi_{j}:=\lim _{N \rightarrow \infty} P_{i j}^{(N)}=? \quad \begin{aligned}
& \text { Dow it exist? } \\
& \text { How to compute it? }
\end{aligned}
$$

Q2': Which $\pi_{j}, 1 \leq j \leq n$, is the lorgest?
Deli A Markov chain is ergodic if there exists $N>0$ S.t. all entries of P^{N} are strictly positive, ire., $P_{i j}^{(N)}>0$, for all $1 \leq i, j \leqslant n$.
$\left(\begin{array}{c}\text { (ie. one can reach every state from any other state) } \\ \text { within } N \text { steps. }\end{array}\right.$
Thu: If a Markov chain is ergodic, then the limits $\pi_{j}=\lim _{N \rightarrow \infty} P_{i j}^{(N)}$ exist for all $1 \leq j \leq n$, and can be computed as the unique non-negative solutions to

In the example from before, with transition matrix

$$
\mathbb{P}=\left(\begin{array}{lll}
0.3 & 0.3 & 0.4 \\
0.5 & 0.4 & 0.1 \\
0.2 & 0.7 & 0.1
\end{array}\right)=\left(\begin{array}{lll}
P_{11} & P_{12} & P_{13} \\
P_{21} & P_{22} & P_{23} \\
P_{31} & P_{32} & P_{33}
\end{array}\right)
$$

we have:

- Markov chain is ergodic $\quad P_{i j}>0,1 \leq i, j \leq 3$.
- π_{j} can be computed as the nonnegative solution to:

$$
\left\{\begin{array}{l}
\pi_{1}+\pi_{2}+\pi_{3}=1 \leftarrow\langle\vec{\pi}, \overrightarrow{1}\rangle=1 \\
\pi_{1}=\pi_{1} P_{11}+\pi_{2} P_{21}+\pi_{3} P_{31} \\
\pi_{2}=\pi_{1} P_{12}+\pi_{2} P_{22}+\pi_{3} P_{32} \\
\pi_{3}=\pi_{1} P_{13}+\pi_{2} P_{23}+\pi_{3} P_{33}
\end{array}\right\} \overrightarrow{\left.P_{2}, \pi_{3}\right)}
$$

In other words, using Linear Algedze, the above is equivalent to finding an eigenvector $\vec{\pi} \leq\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ for the matrix p with eigenvalue 1, whose entries are nonnegative and and up to 1.

$$
\vec{\pi}=\left(\pi_{2}, \pi_{2}, \pi_{3}\right)=\left(\frac{47}{129}, \frac{55}{129}, \frac{9}{43}\right) \triangleq(0,36,0.43,0.21)
$$

