Quick recap:

- Permutations of n objects: n !
- Permutations of n objects $\left(n_{1}\right.$ of them alike
$n_{2}-11$
\vdots
$n_{k}-u$
- Combinations of n objects taken k at a time "choose k objects from n

$$
\frac{n!}{n_{1}!\cdots n_{k}!}
$$

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$ available objects, with the order in which they are chosen being irrelevant"

Ex: From a group of 5 girls and 7 boys, a team of 2 girls and 3 boys must be chosen.
a) How many teams are possible?

$$
\begin{aligned}
& \underbrace{\binom{7}{3}}_{\left.\begin{array}{l}
5 \\
2
\end{array}\right)}=\frac{5!=5 \cdot 4!}{3!2!} \cdot \frac{7!}{4!3!} \\
& \underbrace{10}_{10} \prod_{\substack{11 \\
\text { teams } \\
\text { of boy! }}}^{\left(\begin{array}{l}
3!
\end{array}\right.}=\frac{5 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3!}{3!2!3!}=350
\end{aligned}
$$

b) What if 2 of the boos are fighting and cannot be put in the same team?
"Bad teams"

Total number of teams available noun is

$$
\begin{aligned}
& \text { "food" } 30 \cdot\binom{5}{2} \stackrel{=}{400} \\
& \text { teams of } \gamma \\
& \text { boys } \\
& 10
\end{aligned}
$$

$$
\begin{aligned}
& \text { Pascal's Triangle } \leftarrow \text { Convenient way to arrange } \\
& \frac{\text { Pascal s Triangle }}{\left.k=0 \quad \underset{k=1}{\text { Convenient }} \underset{\substack{\text { binomial } \\
k=2}}{\substack{\text { coefficients } \\
k=3}} \begin{array}{l}
n=4 \ldots \\
k
\end{array}\right)=\frac{n!}{k!(k-k)!}} \\
& n=0 \quad\binom{0}{0}=1 \\
& n=1 \quad\binom{1}{0}=1 \quad\binom{1}{1}=1 \\
& n=2 \quad\binom{2}{0}=1 \quad\binom{2}{1}=2\binom{2}{2}=1 \\
& n=3 \quad\binom{3}{0}=1 \quad\binom{3}{1}=3\binom{3}{2}=3\binom{3}{3}=1 \\
& n=4 \quad\binom{4}{0}=1 \quad\binom{4}{1}=4 \quad\binom{4}{2}=6\binom{4}{3}=4\binom{4}{4}=1 \\
& n=5 \quad\binom{5}{0}=1 \quad\binom{5}{1}=5\binom{5}{2}=10 \quad\binom{5}{3}=10\binom{5}{4}=5\binom{5}{5}=1
\end{aligned}
$$

Pascal's identities: symmetry "across the middle"
(1) $\quad\binom{n}{k}=\binom{n}{n-k}$
of Pascal's triangle

k objeds
out of n to take.

F choosing $n-k$
objects out of n to leave behind.

Binomial Theorem:
For all $n \in \mathbb{N}$,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Pf: Proof by induction on n :

$$
\begin{aligned}
n=1 \quad(x+y)^{1}=\sum_{k=0}^{1}\binom{1}{k} x^{k} y^{1-k} & =\underbrace{(1) x^{0} y^{1-0}}_{k=0}+\underbrace{\binom{1}{1} x^{1} y^{1-1}}_{k=1} \\
& =y+x
\end{aligned}
$$

Step: Suppose the formula holds for $n-1$, and let us
show that it then must also hold for n.

$$
\begin{aligned}
& (x+y)^{n}=(x+y)(x+y)^{n-1} \\
& \begin{array}{c}
\text { induction } \\
\text { hypothesis } \\
(n-1)
\end{array}=(x+y)\left(\sum_{k=0}^{n-1}\binom{n-1}{k} x^{k} y^{n-1-k}\right) \\
& =\sum_{k=0}^{n-1}\binom{n-1}{k} x^{k+1} y^{n-1-k}+\sum_{k=0}^{n-1}\binom{n-1}{k} x^{k} y^{n-k} \\
& \text { (use } i=k+1 \text {) } \\
& \text { (use } i=k \text {) } \\
& =\sum_{i=1}^{n-1}\binom{n-1}{i-1} x^{i} y^{n-i}+\sum_{i=1}^{n-1}\binom{n-1}{i} x^{i} y^{n-i} \\
& +\underbrace{\binom{n-1}{0} x^{0} y^{n-0}}_{\begin{array}{c}
i=0 \\
(\text { second sum) }
\end{array}}+\underbrace{\binom{n-1}{n-1} x^{n} y^{n-n}}_{\begin{array}{c}
i=n \\
(\text { first sum })
\end{array}} \\
& =x^{n}+y^{n}+\sum_{i=1}^{n-1}[\underbrace{\left(P_{\text {Pascal's ideuctity }}\right)}_{\binom{n}{i}<\binom{n-1}{i-1}+\binom{n-1}{i}} x^{i} y^{n-i} \\
& =\binom{n}{0} x^{n}+\sum_{i=1}^{n-1}\binom{n}{i} x^{i} y^{n-i}+\binom{n}{n} y^{n} \\
& =\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}
\end{aligned}
$$

Multinomial coefficients
Permutations of n objects, out of which n_{1} ore alike, ... \ldots, n_{r} are alike.

There $n=n_{1}+n_{2}+\cdots+n_{r}$
Note: $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\binom{n}{k, n-k}$

$$
\begin{aligned}
& r=2 \\
& n_{1}=k, n_{2}=n-k
\end{aligned}
$$

Q: Suppose we have n objects that we must divide into r different categories, with n_{1} of them in the first category, ..., n_{r} in the $r^{\text {th }}$ category.

A:

Moltinounid theorear:

$$
\left(x_{1}+x_{2}+\cdots+x_{r}\right)^{n}=\sum_{\substack{\left(n_{1}, \ldots, n_{r}\right) \\ n_{1}+\ldots+n_{r}=n}}\binom{n}{n_{1}, n_{2}, \ldots, n_{r}} x_{1}^{n_{1} x_{2}^{u_{2}} \ldots x_{r}^{n_{r}} .}
$$

Ex: You have a bowl with 10 blueberries, 7 grapes and 4 respbernies. In how many ways can goo eat them (one at a time)?

$$
\binom{21}{10,7,4}=\frac{21!}{10!7!4!}=116,396,280
$$

How many possible outcomes?

$2^{\text {nd }}$ sound (semi-final)

$$
\binom{4}{2,2} \frac{1}{2!} 2^{2}=\frac{4!}{2!2!} \frac{1}{2!} x^{2}=\frac{4!}{2!} \in \begin{aligned}
& \text { outcomes } \\
& \text { in } 2^{n} \\
& \text { round }
\end{aligned}
$$

$3^{\text {rd } \text { sound }}$ (final)

$$
\binom{2}{2} \cdot 2=2 \text { outcomes. }
$$

Total: $\frac{8!}{4!} \frac{4!}{2!} 2=\frac{8!}{4}=40,320$.

Note: If $\eta=2^{m}$ teams are playing, after m rounds there are n ! total possible out comes.

Ex: The CUNY Graduate Center is on $34^{\text {th }} \mathrm{JF}$. and $5^{\text {th }}$ the, and Columbus circle is on $5^{9^{\text {th }}} 57$. and $8^{\text {th }}$ Ave. If you only welk on streets and avenues (and not Broadway!), in how many ways can you get from CUNY GC to columbus circle?

- How many blocks to we need to walk north?

$$
59-34=25
$$

- How many blocks do we mead to walk west?

$$
8-5=3
$$

Answer: $\binom{28}{3}=\binom{28}{25}=\frac{28!}{25!3!}=\frac{3 W}{28}$

Q: How many positive integer solutions are there to the equation $x_{1}+x_{2}=5$?

$$
\begin{aligned}
& 1+4=5 \\
& 2+3=5 \\
& 3+2=5 \\
& 4+1=5
\end{aligned}
$$

4 total.
Yposot: To separate on units into r ports (that contain at lest some unit) we need to place $r-1$ separating bors in $n-1$ of the available slots.

$$
\begin{aligned}
& 1+1+1+\cdots+1=2021 \\
& \binom{2020}{3}=\frac{2020!}{3!2017!}=1,371,695,140
\end{aligned}
$$

Prop: The equation $x_{1}+x_{2}+\ldots+x_{r}=n$ has $\binom{n-1}{r-1}$ different positive integer solutions.

Cor: The equation $x_{1}+x_{2}+\ldots+x_{r}=n$ has $\binom{n+r-1}{r-1}$ different nonnegative integer solutions.

$$
\begin{aligned}
& \frac{p_{1}}{y_{1}}=x_{1}+1, \quad y_{2}=x_{2}+1, \ldots, y_{j}=x_{j}+1, \ldots, y_{r}=x_{r}+1 \\
& y_{1}+y_{2}+\cdots+y_{r}=\underbrace{x_{1}+x_{2}+\ldots+x_{r}}_{n}+r=n+r
\end{aligned}
$$

\# Solutions

$$
\begin{aligned}
& \text { of } y_{1}+\cdots+y_{r}=n+r \stackrel{\text { op }}{=}\binom{n+r-1}{r-1}=\# \begin{array}{l}
\text { solutions of } \\
x_{1}+x_{2}+\cdots+x_{r}=n
\end{array} \\
& \left(y_{j}>0\right) \quad\left(x_{j} \geqslant 0\right)
\end{aligned}
$$

Ex: An investor has $\$ 20,000$ to invest in 4 possible investments. Each investment must be in units of $\$ 1,000$. In how many ways can the investments be allocated?

Sol:

$$
\begin{aligned}
& \quad x_{1}+x_{2}+x_{3}+x_{4}=20, \quad x_{i} \geqslant 0 \\
& \binom{n+r-1}{r-1}=\binom{23}{3}=1,771 .
\end{aligned}
$$

