"Types" of random voridbles ("distributions")

Bernoulli: Random Variable
A discrete random varible X is Bernoulli with parameter p if:

- $X: \Omega \longrightarrow\{0,1\}$.
write:
$X \sim \operatorname{Bernovel}(r)$
(X can assume only values 0 and $\frac{1}{\uparrow}$)
- $P(X=0)=1-p$,

$$
P(X=1)=p .
$$

- Expected Value: $E(X)=\sum_{x} x \cdot P(X=x)=0 \cdot \underbrace{P(X=0)}_{1-P}+1 \cdot \underbrace{P(X=1)}_{p}$ $=p$.
- Variance: $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}$

$$
\begin{aligned}
& =\left(\sum_{x} x^{2} p(x=x)\right)-p^{2} \\
& =0^{2} \cdot \underbrace{p(x=0)}_{1-p}+1^{2} \cdot \underbrace{p(x=1)}_{p}-p^{2} \\
& =p-p^{2}=p(1-p) .
\end{aligned}
$$

Binomial random variable
A discrete random vornble X is Binomial with parameters n and p if it is a sum of n independent Bernoulli random variables with parameter p. $X_{1}, X_{2}, X_{3}, \ldots, X_{n} \sim$ Bernoulli (p)

$$
\begin{aligned}
& X=x_{1}+x_{2}+x_{3}+\cdots+x_{n} \sim \operatorname{Binomial}(n, p)
\end{aligned}
$$

Recalling our computations on Bernoulli process:

$$
P(X=i)=\binom{n}{i} \cdot P^{i}(1-p)^{n-i} \longleftarrow \text { prob mass }
$$

$$
\binom{i \in \mathbb{Z}}{0 \leq i \leq n}^{n}
$$

- Expected value: $E(X)=E\left(X_{1}+\cdots+X_{n}\right)$

$$
\begin{aligned}
& E(\cdot) \text { is } \\
& \text { linear }
\end{aligned}=\underbrace{E\left(X_{1}\right)}_{p}+\cdots+\underbrace{E\left(X_{n}\right)}_{X_{i} \sim \operatorname{Bernoull}(p)}=n \cdot p \cdot
$$

- Variance: $\operatorname{Var}(X)=\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)$

$$
\begin{aligned}
& =\underbrace{\operatorname{Var}\left(X_{1}\right)}_{p(1-p)}+\cdots+\underbrace{\operatorname{Var}\left(X_{n}\right)}_{p(1-p)}+\underbrace{}_{\begin{array}{l}
=0 \\
\operatorname{Cov}\left(X_{i}, X_{j}\right)=0 \text { if } \\
i \neq j \\
\operatorname{Cov}\left(X_{1}, X_{2}\right) \\
\text { independent }
\end{array}}
\end{aligned}
$$

Ex: If 10% of products manufactured at a certain industry are defective, what is the probability that a random batch of 10 products from this industry have a) mo defective products?
b) at la sit 3 defective products?

Let X be the random variable that counts the \# of defective products in o batch of 10 products.

$$
\begin{aligned}
X= & X_{1}+\cdots+X_{10} \sim \operatorname{Binomial}\left(10, \frac{1}{10}\right) \\
& X_{i} \sim \operatorname{Bernoulli}\left(\frac{1}{10}\right), i=1, \ldots, 10
\end{aligned}
$$

a) $\left.p(X=0)=\binom{10}{0} p^{0}(1-p)^{10}=\left(\frac{9}{10}\right)^{10} \cong 0.3487=34.871\right)$
b)

$$
\begin{aligned}
P(X \geqslant 3) & =1-P(X \leq 2) \\
& =1-P(X=0)-P(X=1)-P(X=2) \\
& =1-\binom{10}{0} p^{0}(1-p)^{10}-\binom{10}{1} p^{1}(1-p)^{9}-\binom{10}{2} p^{2}(1-p)^{8} \\
& =1-\left(\frac{9}{10}\right)^{10}-10 \frac{1}{10}\left(\frac{9}{10}\right)^{9}-45 \frac{1}{10^{2}}\left(\frac{q}{10}\right)^{8} \\
& \cong 0.0702=7.02 y
\end{aligned}
$$

Comparing Binomial Random Variables with different parameters

$$
\begin{aligned}
X & \sim \operatorname{Binomial}\left(10, \frac{1}{2}\right) \\
Y & \sim \text { Binomial }\left(10, \frac{1}{10}\right) \\
E(X) & =n \cdot p=10 \cdot \frac{1}{2}=5 \\
E(Y) & =n \cdot p=10 \cdot \frac{1}{10}=1
\end{aligned}
$$

Use the link below to pley with Binomial distr. $\omega /$ different parameters n, p on your own!

Ex. A board of directors has 12 members, and at least 8 must agree to a business proposal for it to go forwerd. All directors act independently and make the correct decision with probability p. Suppose a business proposal has probability α of being good for the compony. What is the prob. that the board of directors agrees to it?

$$
\alpha=\text { prob. of decision } \begin{aligned}
& \text { being good }
\end{aligned} \quad 1-\alpha=\text { prob. of decision }_{\text {being bod. }}
$$ $G=$ Decision is good

$$
P(B)=P(B \mid G) \underbrace{P(G)}_{\alpha}+P\left(B \mid G^{c}\right) \underbrace{P\left(G^{c}\right)}_{1-\alpha}
$$

- If decision is good:

$$
P(B \mid G)=\sum_{i=8}^{12}\binom{12}{i} p^{i}(1-p)^{12-i}
$$

Prob. of a
$\begin{aligned} & \text { Binomial }(12, p) \\ & \text { random variable } \\ & \text { being } \geqslant 8\end{aligned} \quad\binom{$ need at least 8 directors }{ to make the correct decision }

- If decision is bed: 12

$$
\begin{aligned}
& P \text { decision is bed: } \\
& P\left(B \mid G^{c}\right)=\sum_{i=5}^{12}\binom{12}{i} p^{i}(1-p)^{12-i} \\
& \text { Prob of } a
\end{aligned}
$$

Prob. of a

Binomial (12, p) random variable bring $\geqslant 5$
(need at least 5 directors to make the correct decision, ie., not more than 8 to make wrong decisibu)

Altogether

$$
P(B)=\alpha \cdot \sum_{i=8}^{12}\binom{12}{i} p^{i}(1-p)^{12-i}+(1-\alpha) \sum_{i=5}^{12}\binom{12}{i} p^{i}(1-p)^{12-i}
$$

e.g., if $\alpha=50 \%$ and $p=80 \%$, then

$$
P(B)=96.34 \%
$$

