Recap: sample race
$X: \Omega \longrightarrow \mathbb{R}$ (discrete) random variable
Expected value/ Expectation of X :

$$
E(X)=\sum_{x} x \cdot \underbrace{P(X=x)}_{\begin{array}{c}
p(x) \\
\text { probability mass } \\
\text { function }
\end{array}}
$$

Def: Expected value of a function of a random vocable: $g: \mathbb{R} \rightarrow \mathbb{R}$ function

$$
E(\underbrace{g(X)}_{\mu})=\sum_{x} g(x) \underbrace{P(X=x)}_{p(x)}
$$

itself?
a random variable:
$g(x)$ tales value $g(x)$
when X tales value x.
Ex: $X=$ result of rolling 1 die

$$
\begin{aligned}
& g(x)=x^{2} \\
& E(X)=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}= \\
&=\frac{7}{2} \\
& E(\underbrace{g(X)}_{X^{2}})=1^{2} \cdot \frac{1}{6}+2^{2} \cdot \frac{1}{6}+3^{2} \cdot \frac{1}{6}+4^{2} \cdot \frac{1}{6}+5^{2} \cdot \frac{1}{6}+6^{2} \cdot \frac{1}{6}=\frac{1^{2}+2^{2}+\cdots+6^{2}}{6} \\
&=\frac{91}{6} \text { second } \\
& \text { of } x
\end{aligned}
$$

Def: The expected value of $X^{n}=g(X)$ where $g(x)=x^{n}$ is called the $n^{\text {th }}$ moment of X.

$$
\left(n^{\text {th }} \text { moment of } X\right)=E\left(X^{n}\right), \quad n=1,2,3, \ldots
$$

(Nate: Exacted value is also often called mean $)$
Variance
Def: Let X be a random voribble, and set $\mu=E(X)$. The variance of X is defined os:

$$
\begin{aligned}
\operatorname{Vor}(X) & =E\left((X-\mu)^{2}\right) \Leftarrow E(g(X)) \\
& =\sum_{x}(x-\mu)^{2} p^{p(x)} . \quad g(x)=(x-\mu)^{2}=x^{2}-2 x \mu+\mu^{2}
\end{aligned}
$$

Prop: $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}$
Pf: $\operatorname{Vor}(X)=\sum_{x}(x-\mu)^{2} p(x)=\sum_{x}\left(x^{2}-2 x \mu+\mu^{2}\right) p(x)$

$$
\begin{aligned}
& =\underbrace{\sum_{x} x^{2} p(x)}_{E\left(X^{2}\right)}-2 \mu \underbrace{\sum_{x} x p(x)}_{E(X)=\mu}+\mu^{2} \underbrace{\sum_{x} p(x)}_{=1} \\
& =E\left(X^{2}\right)-2 \mu \underbrace{E(X)}_{\mu}+\mu^{2} \\
& =E\left(X^{2}\right)-2 \mu^{2}+\mu^{2} \\
& =E\left(X^{2}\right)-\mu^{2}=E\left(X^{2}\right)-E(X)^{2} .
\end{aligned}
$$

From the example dove: $X=$ real of rolling 1 die

$$
\begin{aligned}
& \mu=E(X)=\frac{7}{2}, \quad E\left(X^{2}\right)=\frac{91}{6} . \\
& \operatorname{Vor}(X)=E\left(X^{2}\right)-E(X)^{2}=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{91}{6}-\frac{49}{4}=\frac{35}{12}
\end{aligned}
$$

Interpretations of $E(X)$ and $\operatorname{Var}(X)$
$E(X)=\mu \quad$ mean \longleftarrow Measuring X several times, typically, the value observed will be near μ. (the limit as the \# of observations) goes to $+\infty$ is equal to μ) See example w/ simulation in the

$$
\operatorname{Var}(x)=\sigma^{2}<\text { Note: } \operatorname{Var}(x)=\sum_{x}(x-\mu)^{2} p(x) \geqslant 0
$$

So $\sigma=\sqrt{\operatorname{Vor}(x)}$ is well-defined, and is called standard deviation.

EX: Suppose you thip a four coin $P(T)=P(H)=\frac{1}{2}$ to play 2 possible jancos:
Game A: you win \$1.00 if H
lose $\$ 0.50$ if T
Game B: you win \$5.00 of H
lose $\$ 6.00$ if T
$A=$ earnings from playing Game A
\qquad

$$
B
$$

It is
only advantigeass
to play
Game A.
$E(A)=(+1) \cdot \frac{1}{2}+(-0.5) \cdot \frac{1}{2}=0.25$ so r Game A.

$$
E(B)=(+5) \cdot \frac{1}{2}+(-6) \cdot \frac{1}{2}=-0.5<0
$$

$\operatorname{Var}(A)=E\left(A^{2}\right)-E(A)^{2}=\underbrace{1^{2} \cdot \frac{1}{2}+(-0.5)^{2} \cdot \frac{1}{2}}_{0.5625}-(0.25)^{2}$

$$
=0.5625
$$

$$
\operatorname{Var}(B)=E\left(B^{2}\right)-E(B)^{2}=5^{2} \cdot \frac{1}{2}+(-6)^{2} \cdot \frac{1}{2}-(-0.5)^{2}
$$

Upshot: Moot profitable strategy $=30.25$ Game B is is to ploy only gave A.
(or, if you con design "derivatives" on much riskier then Gone A. Game B, then you could do exploit its lave culetility without actually playing it).

Linearity of Expectation
Let $X: \Omega \rightarrow \mathbb{R}$ be a (discrete) random variable.
$\operatorname{Im} X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \lessdot$ values by assumed by X.
Let S_{i} be the event that X takas value x_{i} :

$$
S_{i}=\left(X=x_{i}\right)=\left\{s \in \Omega: X(s)=x_{i}\right\} .
$$

r as a subset of Ω.
Lemme: $E(X)=\sum_{s \in \Omega} X(s) p(s)^{\text {prob mass }}$ function of X

Pl:

$$
\begin{aligned}
E(X) & =\sum_{x_{i}} x_{i} P(\underbrace{X=x_{i}}_{S_{i}}) \\
& =\sum_{i} x_{i} P\left(S_{i}\right) \\
& =\sum_{i} x_{i} \sum_{s \in S_{i}} p(s)
\end{aligned}
$$

if $s \in S_{i}, \sum_{i} \sum_{s \in S_{i}} x_{i} p(s)$
then $X(s)=x_{i}$

$$
\bigcup_{i=1}^{n} S_{i}=\Omega \stackrel{\downarrow}{=} \sum_{i} X(s) \cdot p(s)
$$

and s_{i} ore
mutually $\cdot x$ llorive. $\sum_{s \in \Omega} X(s) \cdot p(s)$.

Prop: Let $X_{1}, X_{2}, \ldots, X_{n}$ be discrete random variables,
$a_{1}, a_{2}, \ldots, a_{n}$ be red numbers.

$$
E(\underbrace{a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}}_{\text {P1: Note that }})=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\cdots+a_{n} E\left(X_{n}\right)
$$

$Z=a_{1} X_{1}+\cdots+a_{n} X_{n}$ is itself a discrete random vorabb, that tokes valve $a_{1} x_{1}+\cdots+a_{n} x_{n}$ when $X_{1, \ldots,} X_{n}$ take value x_{1}, \ldots, x_{n}.
By Prop. dove:

$$
\begin{aligned}
E\left(a_{1} X_{1}+\ldots+a_{n} X_{n}\right) & =E(Z)=\sum_{s \in \Omega} Z(s) \cdot p(s) \\
& =\sum_{s \in \Omega}(\underbrace{\left(a_{1} X_{1}(s)+\cdots+a_{n} X_{n}(s)\right.}_{Z(s)}) \cdot p(s) \\
& =\sum_{s \in \Omega} a_{1} X_{1}(s) p(s)+\cdots+\sum_{s \in \Omega}^{\sum_{n} a_{n} X_{n}(s) p(s)} \\
& =a_{1} \underbrace{E\left(X_{1}\right)}_{\frac{s \in \Omega}{} X_{1}(s) p(s)}+\cdots+a_{n} \underbrace{\sum_{s \in \Omega} X_{n}(s) p(s)}_{E\left(X_{n}\right)} \\
& =a_{1} E\left(X_{1}\right)+\cdots+a_{n} E\left(X_{n}\right) .
\end{aligned}
$$

Covariance
Def: Let X and Y be (discrete) random variables.

$$
\operatorname{Cov}(X, Y)=E((X-E(X)) \cdot(Y-E(Y)))
$$

Prop: $\operatorname{Cov}(X, Y)=E(X \cdot Y)-E(X) E(Y)$
Pl:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E((X-E(X)) \cdot(Y-E(Y))) \\
& =E(X \cdot Y-X \underbrace{E(Y)}_{\in \mathbb{R}}-Y \cdot \underbrace{E(X)}_{\epsilon \mathbb{R}}+\underbrace{E(X) E(Y)}_{\in \mathbb{R}}) \\
\text { linearity } & \downarrow \\
& =E(X \cdot Y)-E(Y) E(X)-E(Y) E(X)+E(X) E(Y) . \\
& =E(X \cdot Y)-E(X) E(Y) .
\end{aligned}
$$

Interpretation: $\operatorname{Cov}(X, Y)$ is a measure of joint variability of X and Y.

Def: The correlation between X and Y as

$$
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Vor}(Y)}}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{x} \cdot \sigma_{y}}
$$

Note: X and Y are independent $\Longleftrightarrow \operatorname{Cov}(X, Y)=0$

$$
\begin{aligned}
& \Longleftrightarrow E(X \cdot Y)=E(X) \cdot E(Y) \\
& \Longleftrightarrow P_{X, Y}=0
\end{aligned}
$$

Facts:

$$
\begin{aligned}
& \operatorname{Var}(a X+b y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y) . \\
& \operatorname{Cov}(X, X)=E(X \cdot X)-E(X) E(X) \\
& Y \\
& Y(X) \\
&=E\left(X^{2}\right)-E(X)^{2}=\operatorname{Var}(X)
\end{aligned}
$$

