Monty Hall Problem

Better intuition:

Matching problem: Suppose (30) students are in a classroom and have identical phones. The professor collects all the phones from students and places them in a common bucket. At the end of Class, each student pucks one phone from the bucket. what is the probability that none of the students picks their own phone?

Answer:

$$
\left.\begin{array}{rl}
p=\sum_{j=0}^{n} \frac{(-1)^{j}}{j!} \approx 36.7 \% \text { as } n \rightarrow \infty \\
& (\text { Inclusion-}- \text { exclusion } \\
\text { principe }
\end{array}\right)
$$

Basic counting:
Q: Lehman's cafeteria has the following lunch options

$$
\begin{array}{ll}
3 & \text { options } \\
\text { of } & \text { sides }
\end{array} \quad \begin{array}{ll}
2 & \text { options } \\
\text { for } & \text { protein }
\end{array} \quad \begin{array}{ll}
5 & \text { options } \\
\text { of } & \text { drink }
\end{array}
$$

How many possible meals are there in tote?

$$
3 \cdot 2 \cdot 5=30 \text { choices. }
$$

More generally:
"Basic Prinaple of Counting"
Experiment 1: n_{1} outcomes Collection of outcomes
Experiment 2: n_{2} outcomes $\{$ for all experiments has a total of
Experiment $k: \quad n_{k}$ outcomes $n_{1}, n_{2} \ldots n_{k}$ possible outcomes.
Ex: License plates

$$
\underbrace{A}_{\text {letter }} \underbrace{B}_{\text {letter }}) \underbrace{C}_{\text {letter }} \underbrace{2}_{\#}) \underbrace{0}_{\#} \underbrace{2}_{\#} \underbrace{1}_{\#}
$$

Experiment $1,-3: 26$ letters
Experiments 4,-7:10 numbers $\left\{\begin{array}{l}\text { total: } \\ 26^{3} \cdot 10^{4}=175,760,000\end{array}\right.$

Permutations Factorial $n!=n(n-1)(n-2) \ldots 1 \quad(0!=1$ by convention $n \in \mathbb{N}$ There are n ! ways of reshuffling n objects.

- ABC $n=3$ objects (distinct) 3.2.1
$\underset{A B C}{A C B} \quad \frac{B A C}{B C A} \quad C \frac{A B}{B A} \quad 3!=6$ permutations
- MATH $n=4$ objects $\leadsto 4!=4.3 .2 .1=24$ permutations (distinct)
- MAT $\quad \begin{aligned} & n=4 \text { objects } \\ & (2 \text { of them are dike })\end{aligned} \frac{4!}{2!}=\frac{24}{2}=12$ permutations
$\left.\begin{array}{|c|c|}\hline \text { THAT } \\ \text { THAT }\end{array}\right\}$ double counted
- PEPPER $n=6$ objects

$$
\frac{6!}{3!2!}=\frac{6.5 .4 .3!}{3!2!}
$$

$$
\begin{aligned}
& n=6 \text { objects } \\
& (3 \text { of them are alike }-P) \\
& (2 \text { of them are alike }-E)
\end{aligned}
$$

$$
\begin{gathered}
P_{1} P_{2} P_{3} \\
\left(\begin{array}{c}
P_{1} E P_{2} P_{3} R E \\
P_{3} E P P_{12} R E \\
\vdots
\end{array}\right)_{3!=6} \begin{array}{l}
\text { redundancy } \\
\text { is the } P_{s}^{\prime}
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& E_{1} E_{2} \\
& \binom{P E_{1} P P R E_{2}}{P E_{2} P P R E_{1}}_{2!=2} \sim \text { PEPPRE } \\
& \begin{array}{l}
\text { redundiona } \\
\text { in the } E_{5}^{\prime}
\end{array}
\end{aligned}
$$

n objects
n_{1} of them are dike n_{2} of them are alike i
n_{k} of them ore alike

Total number of permutations:

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

$$
\text { ABRAKATABRA } \frac{11!}{5!2!2!}
$$

$$
\begin{aligned}
11! & =11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5! \\
\frac{11!}{5!2!2!} & =\frac{11 \cdot 10 \cdot 9 \cdot 8^{2} \cdot 7 \cdot 6}{4}=83,160
\end{aligned}
$$

Q: In how many ways can the letters in the word OPTICAL be permuted such that all the vowels are Kept together?

OlA PTCL
$T A 10$ CL

$$
n=5 \text { objects: } O I A, P, T, C, L
$$

$n^{\prime}=3$ objects within the combo-letter $0,1, A$ treat this as a "combo-letter"

A: $5!\cdot 3!=120.6 \xlongequal{=} 720$

Combinations:
Q. From n objects, we want to choose K in no particular order.

$$
\begin{aligned}
& \begin{array}{l}
\text { If the } \\
\text { order mot } \\
\text { does not } \\
\text { matier }
\end{array} \\
& \frac{n(n-1)(n-2) \ldots(n-k+1)}{k!\sum_{n}} \\
& \begin{array}{l}
\text { permutations of } \\
\text { the order of choices. } \\
(n-k)!
\end{array} \\
& k!
\end{aligned}
$$

$$
\text { sea: " } n \text { choose } k \text { " }=\frac{n!}{k!(n-k)!}
$$

Def: $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is called a binomial coefficient

Q: Suppose you have 10 blue berries and 7 resphernies in a bowl. In how many ways can you eat these 17 berries one by one?

$$
\binom{17}{7}=\frac{17!}{7!10!}=\binom{17}{10}
$$

