Recep from last lecture:
Def: $\left(s_{n}\right)_{n \in \mathbb{N}}$ is Cauchy of $\forall \varepsilon>0 \exists N \in \mathbb{N}$ such that if $n, m \geqslant N$ then $\left|s_{n}-s_{m}\right|<\varepsilon$.

We proved lost time that:
$\left(S_{n}\right)_{n \in \mathbb{N}}$ is convergent $\Longrightarrow\left(S_{n}\right)_{n \in \mathbb{N}}$ is Cauchy
Prop. If $\left(s_{n}\right)_{n \in N}$ is Cavell, then $\left(s_{n}\right)_{n \in \mathbb{N}}$ is bounded.
Pf: Take $\varepsilon=1$; then there exists $N \in \mathbb{N}$ s.t.
if $n, m \geqslant N$, then $\left|s_{n}-s_{m}\right|<\varepsilon=1$; i.e.

$$
-1<s_{n}-s_{m}<1
$$

Take $m=N$:

$$
\begin{aligned}
&-1<s_{n}-s_{N}<1 \\
& s_{n}-1 s_{n}<s_{N} \\
& s_{n}^{\prime \prime}
\end{aligned} \text { for all } n \geqslant N
$$

So, for $n \geq N$, all elements in the sequence ore in the interval $\left(s_{N}-1, s_{N}+1\right)=(a, b)$.
Let $M=\max _{1 \leq n \leq N}\left\{\left|S_{n}\right|\right\}$. Then

$$
\begin{array}{ll}
\left|s_{n}\right| \leq M & \text { if } \quad n \leq N \\
a<s_{n}<b & \text { if } \quad n \geqslant N
\end{array}
$$

 ie., $\left(S_{n}\right)_{n \in \mathbb{N}}$ is bounded.

Theorem. $\left(s_{n}\right)_{n \in \mathbb{N}}$ is Cauchy $\Longleftrightarrow\left(s_{n}\right)_{n \in \mathbb{N}}$ is convergent. (This is equivalent to the Completeness Axiom)

Proof. First, recall we already proved nonempty bounded that convergent sequences ore Cavcly. $(\Longleftarrow$).
For the converse (\Longrightarrow), we will use that if $\left(s_{n}\right)_{n \in \mathbb{N}}$ is a sequence roach that $\lim _{x \rightarrow \infty} \inf _{x \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \sup s_{a}=L$, then the sequence is convergent and $\lim _{n \rightarrow \infty} s_{n}=L$. Since $\left(s_{n}\right)_{n \in \mathbb{N}}$ is Cauchy, for any given $\varepsilon>0$, $\exists N \in \mathbb{N}$ s.t. if $n, m \geqslant N$, then $\left|s_{n}-s_{m}\right|<\varepsilon$, so $-\varepsilon<s_{n}-s_{m}<\varepsilon$ and hence $S_{n}<s_{m}+\varepsilon$. That implies that:

$$
V_{N}:=\sup \left\{s_{n}: n \geqslant N\right\} \leq s_{m}+\varepsilon \quad \text { for } m \geqslant N .
$$

Thus $V_{N}-\varepsilon \leq S_{m}$ for all $m \geqslant N$, hence $V_{N}-\varepsilon \leq \inf \left\{\mathrm{sim}_{m}: m \geqslant N\right\}$. Altogether:

$$
\sup \left\{s_{n}: n \geqslant N\right\}=V_{N} \leq \inf \left\{s_{m}: m \geqslant N\right\}+\varepsilon
$$

Taking the limit as $N \rightarrow \infty$ of both sides,
since

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sup s_{n}=\lim _{N \rightarrow \infty} \frac{\sup \left\{s_{n}: n \geqslant N\right\}}{} \\
& \lim _{n \rightarrow \infty} \frac{\lim _{n}: n}{} \quad s_{N \rightarrow \infty} \underline{i n f\left\{s_{m}: m \geqslant N\right\}}
\end{aligned}
$$

We get:

$$
\lim _{n \rightarrow \infty} \operatorname{sip}_{n \rightarrow \infty} s_{n} \leq\left(\operatorname{limimf}_{n \rightarrow \infty} s_{n}\right)+\varepsilon^{c}
$$ this

arburily
sural.
and thus $\lim _{n \rightarrow \infty} \sup _{n \rightarrow \infty} \leq \liminf _{n \rightarrow \infty} s_{n}$.
the sequence $\left(s_{n}\right)_{n \in N}$ converges, and

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \inf s_{n}=\lim _{n \rightarrow \infty} \operatorname{sop} s_{n}
$$

Subsequences
Intuition: $\left(s_{1}\right), s_{2}, s_{3},\left(s_{4}\right), s_{5}, s_{6}, s_{7}, \ldots$

$$
s_{1}, s_{2}, s_{4}, s_{7}, \ldots
$$

Del: If $\left(S_{n}\right)_{n \in N}$ is a sequence, then a subsequence of $\left(s_{n}\right)_{n \in \mathbb{N}}$ is a sequence $\left(s_{n_{k}}\right)_{k \in \mathbb{N}}$, where the assignment $K \longmapsto U_{k}$ is an increasing function $\mathbb{N} \rightarrow \mathbb{N}$.

$$
\begin{aligned}
& \left(s_{1}\right), s_{2}, s_{3},\left(s_{1}\right), s_{5}, s_{6},\left(s_{7}\right), \ldots \\
& s_{1}, s_{2}, s_{4}, s_{7}, \ldots \\
& n_{1}=1, n_{2}=2, n_{3}=4, n_{4}=7,
\end{aligned}
$$

Example: $\quad s_{n}=(-1)^{n} \cdot n^{2}$

Another, subsequence of $\left(S_{n}\right)$ is the subsequence of all negative elements

$$
\begin{aligned}
& s_{n_{l}}=(-1)^{2 l-1} \cdot(2 l-1)^{2}=-(2 l-1)^{2} \\
& n_{l}=2 l-1
\end{aligned} \quad \begin{aligned}
& l \\
& \\
&
\end{aligned}
$$

Example: $\quad a_{n}=\sin \left(\frac{n \pi}{4}\right) \quad n \in \mathbb{N}$
Examples of subsequences of a_{n} :

n	a_{n}
1	$\sqrt{2} / 2$
2	1
3	$\sqrt{2} / 2$
4	0
5	$-\sqrt{2} / 2$
6	-1
7	$-\sqrt{2} / 2$
8	0
i	i

this sequence is periodic:
$a_{n+8}=a_{n}$
$\forall n \in \mathbb{N}$.

- Subsequence of 1 's only

$$
\{1,1,1,1, \ldots\}
$$

$$
\left\{a_{2}, a_{10}, a_{181} \ldots\right\}
$$

$\left(a_{n_{k}}\right)_{k \in \mathbb{N}}$, where $\begin{aligned} & n_{k}=8(k-1)+2\end{aligned}$

$$
\text { lie. } n_{k}=8 k-6
$$

- Subsequence of odd indices:
$\left(a_{n_{l}}\right)_{l \in \mathbb{N}}, \quad n_{e}=2 l-1$.
$\left\{a_{1}, a_{3}, a_{5}, a_{7}, \ldots\right\}=$
$=\left\{\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}, \ldots\right.$
- Subsequence of even indie

$$
\begin{aligned}
& \left(a_{n_{t}}\right)_{t \in N} \quad n_{t}=2 t . \\
& \left\{a_{2}, a_{4}, a_{6}, a_{8}, \ldots\right\}= \\
= & \{1,0,-1,0,1,0,-1,0, \ldots
\end{aligned}
$$

Theorem. Let $\left(s_{n}\right)_{n \in \mathbb{N}}$ be a sequence.

- Given $t \in \mathbb{R}$, there exists a subsequena $\left(s_{n_{k}}\right)_{k \in \mathbb{N}}$ of $\left(s_{n}\right)_{n} \in \mathbb{N}$ that converges to t if and only if $\left\{n \in \mathbb{N}:\left|s_{n}-t\right|<\varepsilon\right\}$ is an infinite set for all $\varepsilon>0$.
- If $\left(s_{n}\right)_{n \in \mathbb{N}}$ is unbounded from love, then it

$\left(S_{n}\right)_{n \in N}$ enters there has a subsequence that diverges to $+\infty$.
- If $\left(s_{n}\right)_{n \in \mathbb{N}}$ is unbounded arbitrarily small maighbst's of L_{1} and L_{2} infinity often if and only if there exist subsequences converging to L_{1} and to L_{2}. from below, then it has a subsequence that diverges to $-\infty$

Theorem. If a sequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ converges to L, then every subsequence of $\left(S_{n}\right) n \in \mathbb{N}$ also converges to L.
Ph. Let $\left(s_{n_{k}}\right)_{k \in N}$ be a subsequence of $\left(s_{n}\right)_{n \in \mathbb{N}}$. Since $s_{n} \rightarrow L$, we know that $\forall \varepsilon>0, \exists N \in N$ sf. $n \geqslant N$, then $\left|s_{n}-L\right|<\varepsilon$. As $K \longmapsto n_{k}$ is an increodng function, $n_{k} \geqslant k$ for all $k \in \mathbb{N}$. Thus, $n_{k} \geqslant k \geqslant N$ whenever $k \geqslant N$. Therefore $\left|s_{n_{k}}-L\right|<\sum$ whenever $k \geqslant N$; i.e., $\quad s_{n_{k}} \longrightarrow L$.

Remark: The converse statement also holds!

Bolzano-Weierstrass Theorem
Every bounded sequence (in \mathbb{R}) has a convergent subsequence.

Lemma. Every sequence $\left(s_{n}\right)_{n \in N}$ has a monatomic subsequence.
Pl. Let's say s_{n} is a dominant term if $\forall m \gg u$,
$\mathrm{s}_{n}>\mathrm{s}_{\mathrm{m}}$. Clearly, there are 2 possibilities:

1) There are infinitely many dominant elements
 $\operatorname{im}\left(s_{n}\right)_{n \in \mathbb{N}}$
2) There are finitely many dominant elenerts in $\left(S_{n}\right)_{n \in N}$

In case 1), let $\left(S_{n_{k}}\right)_{k \in \mathbb{N}}$ be a subsequence of $\left(s_{n}\right)_{n \in \mathbb{N}}$ consisting only of dominant elenants.
By definition, $S_{n_{k}}>S_{n_{k+1}}$ for all $k_{\text {; }}$ so $\left(S_{n_{k}}\right)_{k \in N}$ is monotonic decreasing

In case 2), since there ore only finitely many dominant elements, we may choose $n_{1} \in N$ such that S_{n} is not docuinart for all $n \geqslant n_{1}$.

Apply the same reasoning with $N=n_{1}$: ie S_{N} is not dominant, choose $n_{2} \in \mathbb{N}$ to be the $m \in \mathbb{N}$ given bore; $i=$.
$S_{n_{2}} \geqslant S_{n_{1}}$ and proceed inductively. This produces a monotonic increasing subsequence $s_{n_{1}} \leq s_{n_{2}} \leq s_{n_{3}} \leq \ldots$

Proof of Bolzano-Weierstrass Thu:
Since $\left(s_{n}\right)_{n \in \mathbb{N}}$ is bounded, so is any subsequence $\left(S_{n_{k}}\right)_{k \in \mathbb{N}}$. Choose a monotonic subsequence $\left(s_{n_{k}}\right)_{k \in \mathbb{N}}$, which exists by the dove Lemma. Then $\left(s_{n_{k}}\right)_{k \in \mathbb{N}}$ is bounded and monotonic, and therefore, convergent.

We proved in Lecture 7 that mavotomic bounded sequences converge.

Subsequential limits
Definition. A subsequential limit of a sequence $\left(s_{n}\right)_{n \in N}$ is a real number or $\pm \infty$ which arises as the limit of some subsequence of $\left(s_{n}\right)_{n \in N}$.
We denote $S=\left\{t \in \mathbb{R} \cup\{ \pm \infty\}: S_{n_{k}} \rightarrow t\right.$ for some subsequence $\}$ $\left(s_{n_{k}}\right)_{k \in \mathbb{N}}$ of $\left.\left(s_{n}\right)_{n \in \mathbb{N}}\right)$

Examples:

- $s_{n}=(-1)^{n} \cdot n^{2}$

n	s_{n}
1	-1
2	4
3	-9
4	16
5	-25
i	\vdots

- $a_{n}=\sin \left(\frac{n \pi}{4}\right)$

n	a_{n}
1	$\sqrt{2} / 2$
2	1
3	$\sqrt{2} / 2$
4	0
5	$-\sqrt{2} / 2$
6	-1
7	$-\sqrt{2} / 2$
8	0
\vdots	\vdots

All subsequences of $\left(s_{n}\right)_{n \in N}$ have a limit, go either to $+\infty$ or - ∞.

$$
S=\{-\infty,+\infty\}
$$

All subsequences of $\left(a_{n}\right)_{n \in \mathbb{N}}$ that have a limit ere eventually constant (because $\left(a_{n}\right)_{n \in N}$ is periodic).

$$
S=\left\{-1,-\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}, 1\right\}
$$

Theorem. If $\left(s_{n}\right)_{n \in N}$ is a sequences then There exist monotonic subsequences $\left(S_{n_{k}}\right)_{k \in N}$ and $\left(s_{n_{l}}\right)_{l \in \mathbb{N}}$ which converge to $\lim _{n \rightarrow \infty} \sup s_{n}$ and $\lim _{n \rightarrow \infty} \inf _{n} S_{n}$ respectively:

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} s_{n_{k}}=\lim _{n \rightarrow \infty} s_{n} \\
& \lim _{l \rightarrow \infty} s_{n l}=\lim _{n \rightarrow \infty} s_{n}
\end{aligned}
$$

Theorem. If $\left(s_{n}\right)_{n \in \mathbb{N}}$ is a sequence in \mathbb{R}, denoting by S the set of its subsequential limits, $S \neq \varnothing$ and

$$
\begin{array}{ll}
\limsup _{n \rightarrow \infty} & s_{n}=\sup S \\
\liminf _{n \rightarrow \infty} & s_{n}=\ln f S
\end{array}
$$

In particular, $s_{n} \rightarrow L \quad$ if and only if $S=\{L\}$.
(Note: this loot statement is the converse mentioned in the Remark above).

