Monotone Sequences
Def: A sequence $\left(S_{n}\right)_{n \in \mathbb{N}}$ is monotone increasing if $S_{n} \leqslant S_{n+1}$ for all $n \in \mathbb{N}$,

$$
\left(\begin{array}{cccc}
\text { Note: } \text { If } & s_{n} & \text { is } & \text { incresering, then: } \\
S_{n} \leq s_{n+1} \leq & s_{n+2} \leq s_{n+3} \leq \\
s_{0} & \text { we can } & \text { equivdenty } & \text { wite } \\
n \leq m m & \Rightarrow & s_{n} \leq s_{m}
\end{array}\right)
$$

and it is monotone decreesing if $s_{n} \geqslant S_{n+1}$ for all $n \in \mathbb{N}$,

Collectively, these are called monotone/monotomic sequences.
Examples:

$$
s_{n}=\frac{1}{n} \quad \underset{0}{1_{0}^{\leftarrow} \cdot \frac{1}{4} 1 / 31 / 2} \quad 1
$$

(4) increasing
(*) decreasing

$$
s_{n}=\frac{1}{n}, \quad s_{n+1}=\frac{1}{n+1}
$$

$s_{n+1}=\frac{1}{n+1}<\frac{1}{n}=s_{n}$ for all $n \in N$
This is a strictly decreasing sequence
$s_{n}=n^{3}$ increasing, $s_{n+1}=(n+1)^{3}>n^{3}=s_{n}$

$$
S_{n}=\left(1+\frac{1}{n}\right)^{n}
$$

As: increasing ... but why?
How do you compare:

$$
\begin{aligned}
& S_{n}=\left(1+\frac{1}{n}\right)^{n} \text { and } S_{n+1}=(\underbrace{1+\frac{1}{n+1}}_{\text {smaller }})^{n+1} \text { ? } \\
& S_{n+1}=\left(1+\frac{1}{n+1}\right)^{n} \cdot(\underbrace{1+\frac{1}{n+1}}_{>1}) \quad \underbrace{\text { Prove that }}_{\substack{\text { Exeraiel }}} \begin{array}{l}
\text { Sn+1 }
\end{array}>S_{n} .
\end{aligned}
$$

$$
s_{n}=(-1)^{n}=\left\{\begin{aligned}
1, & n \text { is even } \\
-1, & n \text { is odd } \quad \text { not monotonic }
\end{aligned}\right.
$$

Same for: $s_{n}=(-1)^{n} \cdot n$ or $s_{n}=\frac{(-2)^{n}}{n}$

Theorem. A monotone increasing sequence which is bounded from above converges.

A monotone decreasing sequence which is bounded from below converges

Proof: S_{n} is monotone increasing, that is if $n \leqslant m$, then $s_{n} \leqslant s_{m}$
(now Whereas) ${ }^{\text {kn }}$ is bounded from above, that is $\exists M \in \mathbb{R}$ such that $s_{n} \leq M$ for all $n \in \mathbb{N}$. Then the set $\left\{S_{n}: n \in \mathbb{N}\right\}$ is bounded from doove, and thus has a supremum which is a real number:

$$
\mu=\sup \left\{s_{n}: n \in \mathbb{N}\right\}
$$

Claim: $s_{n} \rightarrow \mu$; that is

$$
\begin{aligned}
& \forall \varepsilon>0, \exists N \in \mathbb{N} \\
& n \geqslant N \Rightarrow\left|s_{n}-u\right|<\varepsilon .
\end{aligned}
$$

Given $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $\mu-\varepsilon<S_{N} \leqslant \mu$. Since $\left(S_{n}\right)_{n<\mathbb{N}}$ is increasing, if $n \geqslant N, \quad S_{n} \geqslant S_{N}$. Thus, for all $n \geqslant N$,

$$
\mu-\varepsilon<S_{N} \leq S_{n} \leq \mu=\sup \left\{S_{n}: n \in \mathbb{N}\right\}<\mu+\mathcal{E}
$$

Thus $\mu-\varepsilon<s_{n}<\mu+\varepsilon$, i-e.

$$
-\varepsilon<S_{n}-\mu<\varepsilon, \text { ie. } \quad\left|S_{n}-\mu\right|<\varepsilon
$$

Q: If a sequence is only bounded, does it converge?
A: No; for example: $a_{n}=(-1)^{n}$ is bounded

$$
\left|Q_{n}\right| \leq 1, \quad \forall n \in \mathbb{N}
$$

and it does not converge. (it is not monatomic)
Q: If a sequence is only monotonic increasing, does it converge?
A: No, for example: $a_{n}=n$ is increasing and does not converge (lime $\left.a_{n}=+\infty\right)$ (it is mot bounded from obore)

Theorem. (i) If $\left(S_{n}\right)_{n \in \mathbb{N}}$ is unbounded from dove, and monotone increasing, then $\lim _{n \rightarrow \infty} s_{n}=+\infty$.
(ii) If $\left(s_{n}\right)_{n \in \mathbb{N}}$ is unbounded from below, and monotonic decreasing, then $\lim _{n \rightarrow \infty} s_{n}=-\infty$.
Proof. (i) Given $M \in \mathbb{R}$, since the set $\left\{S_{n}: n \in \mathbb{N}\right\}$ is unbounded, there exists some $N \in \mathbb{N}$ such that $s_{N} \geqslant M$. Since the Sequence is increasing,
$S_{n} \geqslant s_{N}$ for all $n \geqslant N$.

$$
\text { Thus, } \forall n \geqslant N \text {, }
$$

$$
\exists N \in \mathbb{N} \quad n \geqslant N \Rightarrow s_{n} \geqslant M
$$

which means flat $\lim _{x \rightarrow \infty} s_{n}=+\infty$.

Altogether: Monotone increasing segsences S_{n} either

- Converge (if bounded from above)

$$
S_{n} \rightarrow L
$$

- diverge to $+\infty$ (if unbounded).

$$
\operatorname{Sn} \longrightarrow+\infty
$$

Does s_{n} converge? No.

$$
\lim _{n \rightarrow \infty} \inf _{n} s_{n}=-1, \quad \lim _{n \rightarrow \infty} \sup _{n} s_{n}=+1
$$

Def: Given a sequence $\left(s_{n}\right)_{n \in \mathbb{N}, ~ c o n s i d e r ~}^{\text {a }}$ the sets

$$
\left\{s_{n}: n \geqslant N\right\} \quad \begin{aligned}
& \text { infinitely many } \\
& \text { indices } n \\
& \text { satisfy this! }
\end{aligned}
$$

Then defence:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sup s_{n}:=\lim _{N \rightarrow \infty} \sup \left\{s_{n}: n \geqslant N\right\} \\
& \liminf _{n \rightarrow \infty} s_{n}:=\lim _{N \rightarrow \infty} \inf \left\{s_{n}: n \geqslant N\right\} .
\end{aligned}
$$

"The $\lim _{n \rightarrow \infty}$ sip is the largest number which is approximated infinitely often along the sequence S_{n} ".
Ex: $\lim _{n \rightarrow \infty} \sup \sin (n)=1$
$\lim _{n \rightarrow \infty}$ inf $\sin (n)=-1$.

$\lim _{n \rightarrow \infty} \sin (n)$ does not exist.
Theorem. Given a sequence $(s a)_{n \in \mathbb{N}}$,
$\lim _{n \rightarrow \infty} i m f_{n} s_{n} \leq \lim _{n \rightarrow \infty} \sup _{n \rightarrow} s_{n}$; with equality if and only if $\left(s_{n}\right)_{n \in \mathbb{N}}$ converges; in which
cere $\quad \lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \operatorname{linf}_{n} s_{n}=\lim _{n \rightarrow \infty} \operatorname{sip} s_{n}$.

Converging sequence:

Sequence that does not converge

Proof: Rend on Ross p.61-62.

Cauchy sequence.
Def. A sequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ is Cavclyy if $\forall \varepsilon>0 \quad \exists N \in \mathbb{N}$ such that of $n, m \geqslant N$, then
"The length of exch

distance between elements of the sequence gets arbitrarily small, provided wo are "far enough" along the sequence.

Proposition. Convergent sequences are Cauchy.
Pf: If $\left(S_{n}\right)_{n \in N}$ converges, then $\exists L \in \mathbb{R}$ such that $\forall \tilde{\varepsilon} \geq 0 \quad \exists \tilde{N} \in \mathbb{N}$ sit. if $x \geqslant \tilde{N}$ the $\left|s_{n}-L\right|<\widetilde{\varepsilon}$. Given $\varepsilon>0$, applying the def. of Convergence with $\tilde{\varepsilon}=\frac{\varepsilon}{2}$, we find that $\exists \tilde{N} \in W$ $\left|s_{n}-L\right|<\frac{\varepsilon}{2}$ for all $n \geqslant \tilde{N}$.
So for $n, m \geqslant \tilde{N}$, we have:

$$
\begin{aligned}
&\left|s_{n}-s_{m}\right|=|\underbrace{s_{n}-L}_{a}-(\underbrace{s_{m}-L}_{b})| \\
& \begin{array}{c}
\text { triaggle } \\
\text { ineg. }
\end{array} \leq \underbrace{\left|s_{n}-L\right|}+\left|s_{m}-L\right| \\
&|a-b| \leq|a|+1 b \mid .
\end{aligned}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

This muons $\left(s_{n}\right)_{n \in \mathbb{N}}$ is Caucly.

