MAT320/640	Lecture 7	9/27/2021
Monotone Segueur	۵ -	
Det: A segu	ence (Sn) _{men} is	monstone increasing
$if Sn \leq Snf$	1 for all MEIN.	
	$\frac{1}{s_{\zeta}} \qquad $	Unte: If Sn is increasing, then: $Sn \leq S_{N+4} \leq S_{N+2} \leq S_{N+3} \leq \dots$ so we can equivelently write $n \leq m \implies Sn \leq Sm$.
	nonotone decreesing i	$f S_n \ge S_{n+1}$
for all MEN,		$\left(\begin{array}{c} & & \\ & &$
$ S_4$ S_2	\rightarrow \downarrow	
Collectively, Muss	e are colled mon	tone/monotonic
Sequences.		
Examples. Sn	$=\frac{1}{2}$	
& increasing & decreasing	$S_{N} = \frac{1}{N}$, S_{N+1}	$= \underbrace{1}_{n+1}$
S	$\sum_{n+1}^{n+1} \frac{1}{m} < \frac{1}{m} = s_n$	for all MEN
This	is a strictly decreen	ing segvence

$$S_{n} = n^{3} \qquad \text{increasing}, \qquad S_{n+1} = (n+1)^{3} > n^{3} = S_{n}$$

$$S_{n} = \left(1 + \frac{1}{n}\right)^{n}$$

$$A: \frac{\text{increasing}}{\text{How do gov compore};} \qquad \text{Leger}$$

$$S_{n} = \left(1 + \frac{1}{n}\right)^{n} \quad \text{and} \quad S_{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1} \qquad ?$$

$$S_{n+1} = \left(1 + \frac{1}{n+1}\right)^{n} \cdot \left(1 + \frac{1}{n+4}\right) \qquad \frac{\text{Exercise};}{\text{Proce that}}$$

$$S_{n+1} = \left(1 + \frac{1}{n+1}\right)^{n} \cdot \left(1 + \frac{1}{n+4}\right) \qquad \frac{\text{Exercise};}{\text{Proce that}}$$

$$S_{n} = \left(-1\right)^{n} = \sum_{l=1}^{n} n \quad \text{as arean} \qquad \text{Not monotonic}$$

$$\frac{1}{1 + \frac{1}{n+4}} \qquad \text{Some for:} \quad S_{n} = (-n)^{n} \quad \text{or} \qquad S_{n} = \frac{(-2)^{n}}{n}$$

$$\frac{1}{1 + \frac{1}{n+4}} \qquad \text{Some for:} \quad S_{n} = (-n)^{n} \quad \text{or} \qquad S_{n} = \frac{(-2)^{n}}{n}$$

$$\frac{1}{1 + \frac{1}{n+4}} \qquad \text{Some for:} \quad S_{n} = (-n)^{n} \quad \text{or} \qquad S_{n} = \frac{(-2)^{n}}{n}$$

$$\frac{1}{1 + \frac{1}{n+4}} \qquad \text{Some for:} \qquad S_{n} = (-n)^{n} \quad \text{or} \qquad S_{n} = \frac{(-2)^{n}}{n}$$

$$\frac{1}{1 + \frac{1}{n+4}} \qquad \text{Some for:} \qquad S_{n} = (-n)^{n} \quad \text{or} \qquad S_{n} = \frac{(-2)^{n}}{n}$$

$$\frac{1}{1 + \frac{1}{n+4}} \qquad \text{Some for:} \qquad S_{n} = (-n)^{n} \quad \text{or} \qquad S_{n} = \frac{(-2)^{n}}{n}$$

$$\frac{1}{1 + \frac{1}{n+4}} \qquad \text{Some for:} \qquad S_{n} = \frac{(-1)^{n}}{n} \quad \text{or} \qquad S_{n} = \frac{(-2)^{n}}{n}$$

$$\frac{1}{1 + \frac{1}{n+4}} \qquad S_{n} = \frac{(-1)^{n}}{n}$$

Proof: Sn is monotone increasing, that is
if
$$N \leq m$$
, then $Sn \leq Sm$
(hypotheses) Sn is bounded from above, that is
 $\exists M \in IR$ such that $Sn \leq M$ for all $n \in M$.
Then the set $\Im Sn$: $n \in NS$ is bounded
from above, and thus has a supremum
which is a real number:

$$M = \sup \{S_n : n \in \mathbb{N}\}$$

~

Cere

$$\lim_{n \to \infty} Sn = \lim_{n \to \infty} \inf_{n \to \infty} Sn = \lim_{n \to \infty} Sn.$$

Cauchy sequence.

is Cauchy if Def. A sequence (Sn)non YEZO ZNEN such that $\left|S_n-S_m\right|<\xi$. if N, M > N, then distance Setween elements ("The length of each jump shrimks each time" A the Sequence gets arbitrorily smell, provided we are "for enough" along the sequence. S1 52 53 54 55 Proposition. Convergent seguences are Cauchy. <u>Pf:</u> If (Sn)new convergen, then $\exists L \in \mathbb{R}$ such that $\forall \tilde{z} z o \exists \tilde{N} \in \mathbb{N}$ s.t. if $n \ge \tilde{N}$ then Isn-LI<E. Given E70, applying the def. of Convergence with $\tilde{E} = \frac{E}{2}$, we find that $\exists N \in \mathbb{N}$ $|S_n-L| < \frac{\varepsilon}{2}$ for all N > N. So for non ZN, we have.

