Sequences
Definition: A sequence (of real numbers) is a function
s:
$$[m \in \mathbb{Z} : m \gg m] \longrightarrow \mathbb{R}$$
, where $m \in \mathbb{Z}$ is given.
(Typically, $m = 0$ or $m = 1$)
Example: $m = 1$, $s(n) = \frac{1}{n^2}$
 $s: [1,2,3,...] \longrightarrow \mathbb{R}$ $s(1) = 1$
 $s(2) = \frac{1}{2^2} - \frac{1}{4}$
Other ways to write the sequence: $s(3) = \frac{1}{3^2} = \frac{1}{7}$
 $1, \frac{1}{4}, \frac{1}{4}, \frac{1}{16}, ...$
 $(s_n)_{n \in \mathbb{N}}, s_n = \frac{1}{n^2}$ Use will modely
 $(s_n)_{n \in \mathbb{N}}, s_n = \frac{1}{n^2}$ Use will modely
 $m = 0$ $a_0 = (-1)^n$
 $a_{1} = (-1)^n = -1$
 $a_{2} = (-1)^n = -1$
 $a_{2} = (-1)^n = -1$
 $a_{1} = (-1)^n = -1$
 $a_{2} = (-1)^n = -1$
 $1, -4, 1, -1, 1, ...$
 $b: [1, 2, 3, ...] \rightarrow \mathbb{R}$
 $b(n) = \sqrt{n} = (m)^m$

However, this first (non-regonal) step is essential
because it provides as with the information
that
$$S = \frac{3}{2}$$
 should be used when trying
to apply the definition of convergence.
Rigorous proof that the above sequence converges to $S = \frac{3}{2}$.
Sketch: Given $E > 0$ we must find $N \in M$
such that $u > M \Rightarrow |Sn - \frac{3}{7}| < E$
Solve in n :
 $\left|\frac{3n+4}{7n-4} - \frac{3}{7}\right| < E \iff \left|\frac{21n+7-21n+12}{(7n-4)\cdot7}\right| < E$
For all $u > 1$ $\iff \left|\frac{19}{(7n-4)\cdot7}\right| < E$
 $For all $u > 1$ $\iff \left|\frac{19}{(7n-4)\cdot7}\right| < E$
 $i \Rightarrow \frac{19}{(7n-4)\cdot7} < E \iff 19<7E(7n-9)$
 $\iff \frac{19}{(7n-4)\cdot7} < M \iff \frac{19}{7E} + 4 < 7n$
 $\iff \frac{19}{49E} + \frac{9}{7} < n$
 $N(E)$
 $i \Rightarrow \frac{19}{49E} + \frac{9}{7} < [in+\frac{4}{7}] + 1 \le n$$

.

"Official" proof: Given E>O, let
$$N \in IV$$
 be the
swallest netword number which is $> \frac{19}{49E} + \frac{4}{7}$;
that is $N = \left\lceil \frac{19}{49E} + \frac{4}{7} \right\rceil + 1$,
Sf $N > N$, then
 $M > \frac{19}{49E} + \frac{4}{7} \Rightarrow \left\lceil \frac{19}{9M-4} \right\rceil < E$.
This shows that the definition of convergence
holds with $S = \frac{3}{7}$, that is, lim $Sn = \frac{3}{7}$.
Example: Prove that $\lim_{N \to \infty} \frac{1}{N^2} = 0$.
 $(Sn)_{N \in N}$, $Sn = \frac{1}{N^2}$.
Sketch: Given $E > 0$, we need to find $N = N(E)$ such that
 $\left| \frac{1}{N^2} - 0 \right| < E \iff \frac{1}{N^2} < E \iff \frac{1}{N^2} < E \iff \frac{1}{N^2} < n$.
 $\left| \frac{1}{N^2} - 0 \right| < E \iff \frac{1}{N^2} < E \iff \frac{1}{N^2} < n$.
Official" proof: Given $E > 0$, let $N = \int \frac{1}{\sqrt{E}} \int H$, that is, N \in AI
is the smallest visitural number which is $> \frac{1}{\sqrt{E}} = E^{-\frac{1}{2}}$.

V

If
$$M \ge N$$
, then $M \ge \frac{1}{NE}$, so $1 \le E$ and hence
 $\left|\frac{1}{N^2} - 0\right| \le E$. Therefore, the definition is satisfied
with $S=0$, that is, thin $1=0$.
Proposition: If (Sn) is a sequence, such that
lim $Sn = S$ and lim $Sn = t$, then $S=t$.
 $N=\infty$ $M = S$ and lim $Sn = t$, then $S=t$.
 $N=\infty$ $M = S$ and lim $Sn = t$, then $S=t$.
 $N=\infty$ $M = S$ and lim $Sn = t$, then $S=t$.
 $N=\infty$ $M = S$ and lim $Sn = t$, then $S=t$.
 $N=\infty$ $M = S$ and $M = M$ such that
 $M \ge N_1 \Longrightarrow |Sn - S| \le E$
Here exists $N_2 \in M$ such that
 $M \ge N_2 \Longrightarrow |Sn - S| \le E$
Take $N = Max \{N_1, N_2\} \in N$. If $M \ge N$, then both of
the above hold, $So: |Sn - S| \le E$ and $|Sn - t| \le S$.
 $|S - t| = |(S - Sn) + (Sn - t)| \le |S - Sn| + |Sn - t|$
 a $Triangle$ $M = |Sn - t| = Sn - t|$
 $a + b| \le |a| + |b|$ $\le \le S$

$$\begin{aligned} \mathcal{Q} &= |4 - (-4)| = |(1 - a) + (a - (-4))| \leq \\ \text{triangle} &= |4 - a| + |a - (-4)| < \mathcal{Q} \\ \text{inequality} &= \frac{|4 - a| + |a - (-4)|}{|4|} < \mathcal{Q} \\ &= 1$$