Sequences
Definition: A sequence (of real numbers) is a function $s:\{n \in \mathbb{Z}: n \mathbb{m}\} \rightarrow \mathbb{R}$, where $m \in \mathbb{Z}$ is given.
(Typically, $m=0$ or $m=1$)
Example: $m=1, s(n)=\frac{1}{n^{2}}$

$$
s: \underbrace{\{1,2,3, \ldots\}}_{\mathbb{N}} \rightarrow \mathbb{R}
$$

$$
\begin{aligned}
& s(1)=1 \\
& s(2)=\frac{1}{2^{2}}=\frac{1}{4}
\end{aligned}
$$

Other ways to write the sequence:

$$
s(3)=\frac{1}{3^{2}}=\frac{1}{9}
$$

- $1, \frac{1}{9}, \frac{1}{9}, \frac{1}{16}, \cdots$
- $\left(S_{n}\right)_{n \in \mathbb{N}}, \quad S_{n}=\frac{1}{n^{2}}$.

We will mostly
use this notation.
Example: $\left(a_{n}\right)_{n \geqslant 0}, a_{n}=(-1)^{n}$

$$
\begin{aligned}
& a_{0}=(-1)^{0}=1 \\
& a_{1}=(-4)^{1}=-1 \\
& a_{2}=(-1)^{2}=1
\end{aligned}
$$

$$
\begin{aligned}
& \binom{a:\{0,1,2,3,-\} \rightarrow \mathbb{R}}{a(n)=(-1)^{h}} \\
& a_{n}= \begin{cases}1 & \text { if } n \text { is even } \\
-1 & \text { if } n \text { is odd. } .\end{cases}
\end{aligned}
$$

$$
1,-1,1,-1,1, \ldots
$$

Example: $\left(b_{n}\right)_{n \in \mathbb{N},} b_{n}=\sqrt[n]{n}$

$$
b:\{1,2,3, \ldots\} \rightarrow \mathbb{R}_{N}
$$

$$
b(n)=\sqrt[n]{n}=(n)^{1 / n}
$$

$$
1, \sqrt[2]{2}, \sqrt[2]{3}, \sqrt[4]{4}, \ldots
$$

Limit of a sequence
Definition: A sequence $\left(S_{n}\right)$ of real numbers converges to a limit $s \in \mathbb{R}$ if for all $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that if $x \geqslant N$, then $\underbrace{\left|s_{n}-s\right|<\varepsilon}$.

Notation: $\lim _{u \rightarrow \infty} s_{n}=S$, or $s_{n} \rightarrow S$.

Example: $\lim _{n \rightarrow \infty} \frac{3 n+1}{7 n-4}=$?
$\left(S_{n}\right)_{n \in \mathbb{N}}, \quad S_{n}=\frac{3 n+1}{7 n-4}$

From Calculus, we are inclined to assume this limit will be $\frac{3}{7}$.

$$
\lim _{n \rightarrow \infty} \frac{3 n+1}{7 n-4}=\lim _{n \rightarrow \infty} \frac{x\left(3+\frac{1}{n}\right)}{x\left(7-\frac{4}{n}\right)}=\lim _{n \rightarrow \infty} \frac{3+\frac{1}{n}}{7-\frac{4}{n}}
$$

$$
\stackrel{\lim _{n \rightarrow \infty} 3+\lim _{n \rightarrow \infty} \frac{1}{n}}{\lim _{n \rightarrow \infty} 7-\lim _{n \rightarrow \infty} \frac{4}{n}}=\frac{3+0}{7-0}=\frac{3}{7} .
$$

The above is NOT a rigorous proof in the context of a Real Analysis course. The definition must be used!

However, this first (non-rugorers) step is essential because it provides as with the information that $S=\frac{3}{7}$ should be used when trying to apply the definition of convergence.
Rigorous proof that the above sequence converges to $s=\frac{3}{7}$.
Sketch: Given $\varepsilon>0$ we must find $N \in \mathbb{N}$
such that $u \geqslant N \Rightarrow\left|s_{n}-\frac{3}{7}\right|<\varepsilon$
Solve in n :

$$
\begin{aligned}
& \text { Solve in } n: \\
& \left\lvert\, \begin{array}{l}
\left|\frac{3 n+1}{7 n-4}-\frac{3}{7}\right|<\varepsilon
\end{array}\right. \Longleftrightarrow\left|\frac{21 n+7-21 n+12}{(7 n-4) \cdot 7}\right|<\varepsilon \\
& \text { For all } n \geqslant 1 \\
& 7 n-4>0
\end{aligned} \Longleftrightarrow\left|\frac{19}{(7 n-4) \cdot 7}\right|<\varepsilon .
$$

"Official" proof: Given $\varepsilon>0$, let $N \in \mathbb{N}$ be the smallest natural number which is $>\frac{19}{49 \varepsilon}+\frac{4}{7}$; that is $N=\left\lceil\frac{19}{49 \varepsilon}+\frac{4}{7}\right\rceil+1$,
If $n \geqslant N$, then

$$
\begin{aligned}
n>\frac{19}{49 \varepsilon}+\frac{4}{7} & \Rightarrow\left|\frac{19}{(7 n-4) \cdot 7}\right|<\varepsilon \\
& \Leftrightarrow\left|s_{n}-\frac{3}{7}\right|<\varepsilon
\end{aligned}
$$

This shows that the definition of convergence holds with $S=\frac{3}{7}$, that is, $\lim _{n \rightarrow \infty} S_{n}=\frac{3}{7}$.

Example: Prove that $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$.
$\left(s_{n}\right)_{n \in \mathbb{N}}, s_{n}=\frac{1}{n^{2}}$.
Sketch: Given $\varepsilon>0$, we need to find $N=N(\varepsilon)$ such that

$$
\begin{aligned}
& n \geqslant N \Rightarrow\left|\frac{1}{n^{2}}-0\right|<\varepsilon .<\begin{array}{c}
\text { solve this } \\
\text { in } \\
\varepsilon>0, u>0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Essaritatle } \\
\text { be our } N=N(\varepsilon)
\end{array}
\end{aligned}
$$

"Official" proof: Given $\varepsilon>0$, let $N=\left\lceil\frac{1}{\sqrt{\varepsilon}}\right\rceil+1$, that is, $N \in \mathbb{N}$ is the smallest natural number which is $>\frac{1}{\sqrt{\varepsilon}}=\varepsilon^{-1 / 2}$.

If $u \geqslant N$, then $x>\frac{1}{\sqrt{\varepsilon}}$, so $\frac{1}{n^{2}}<\varepsilon$ and hence $\left|\frac{1}{n^{2}}-0\right|<\varepsilon$. Therefore, the definition is satisfied with $s=0$, that is, $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$.

Proposition: If (sn) is a sequence, such that

$$
\lim _{n \rightarrow \infty} s_{n}=s \text { and } \lim _{n \rightarrow \infty} s_{n}=t \text {, then } s=t \text {. The limit of }
$$

"The limiest of a sequence, if it exists, is unique"
Proof. Using the definition for each of the limits:
Given $\varepsilon>0$, there exists $N_{1} \in \mathbb{N}$ such that

$$
n \geqslant N_{1} \Longrightarrow\left|s_{n}-s\right|<\varepsilon
$$

there exists $N_{2} \in \mathbb{N}$ such that

$$
n \geqslant N_{2} \Rightarrow\left|s_{n}-t\right|<\varepsilon
$$

Take $N=\max \left\{N_{1}, N_{2}\right\}$. \mathbb{N}. If $x \geqslant N$, then both of the above hold, so: $\left|s_{n}-s\right|<\varepsilon$ and $\left|s_{n}-t\right|<\varepsilon$.

$$
\begin{aligned}
& <\varepsilon+\varepsilon=2 \varepsilon
\end{aligned}
$$

We conclude that for all $\varepsilon>0$, $|s-t|<2 \varepsilon$. Therefore $|s-t|=0$ ie., $s=t$.

Example:
Consider the sequence $\left(a_{n}\right)_{n \geqslant 0}, a_{n}=(-1)^{n}$.
Claim: This sequence does not admit a limit. (i.e., it does not converge).

Proof: (by Contradiction). Suppose that there exists $a \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} a_{n}=a$. Then for $\varepsilon=1$, there exists $N \in \mathbb{N}$ such that $n \geqslant N \Rightarrow\left|a_{n}-a\right|<1$.

$$
\text { ie. } \quad n \geq N \Rightarrow\left|(-1)^{n}-a\right|<1 \text {. }
$$

 implies that, if $n \geq N$, then

But then, we fund that:

$$
\begin{aligned}
& 2=|1-(-1)|=|(1-a)+\underbrace{(a-(-1))}| \leq \\
& \begin{array}{l}
\text { Triangle } \\
\text { inequality }
\end{array} \leq \underbrace{|1-a|}_{\text {by } \circledast}+\underbrace{|\underbrace{a-(-1)}_{a+1}|}_{\sum_{b y}^{<1}}<2
\end{aligned}
$$

This contradiction shows that the assumption that there exists $a \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} a_{n}=a$ is false; therefore the sequence $\left(a_{n}\right)$ does not converge.

